A fast EMG-based algorithm for upper-limb motion intention detection by using Levant's differentiators
Electromyography (EMG) signals are widely used for predicting human movement intention in the operation of robotic assistive devices that improve the quality of people's lives with motor problems. One of the current challenges controlling such devices is achieving a natural interaction between...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 10 |
creator | Uribe, Mayumi Hori Vazquez, Carlos Renato Antelis, Javier M. |
description | Electromyography (EMG) signals are widely used for predicting human movement intention in the operation of robotic assistive devices that improve the quality of people's lives with motor problems. One of the current challenges controlling such devices is achieving a natural interaction between the device and the user. However, the most common algorithms applied in motion detection exhibit a slow time response. In this work, we propose the use of robust differentiator algorithms to extract features from EMG signals that allow a fast detection of movement intention. Experimental results show that by using robust differentiator algorithms, we can significantly reduce the latency between the detection movement intention and the real movement, without losing accuracy. |
doi_str_mv | 10.1109/ACCESS.2022.3214531 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2728570811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9919190</ieee_id><doaj_id>oai_doaj_org_article_5d9cdb2e68b04d7d849463b86fbb4836</doaj_id><sourcerecordid>2728570811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-9e82f8d8eb61bc3d05375184dff28ab86dc185737e61bb8dd1d3ee2739ee9ca53</originalsourceid><addsrcrecordid>eNpNUU1vAiEU3DRtUmP9BV5Ieuhp7QL7AUdjbGti04PtmcDysBhdLGAT_33RNaa8A5PHzLwXJsvGuJhgXPDn6Ww2X60mpCBkQgkuK4pvsgHBNc9pRevbf_g-G4WwKdJhqVU1g8xMkZEhovn7a65kAI3kdu28jd87ZJxHh_0efL61O4V2LlrXIdtF6M5IQ4T2jNQRHYLt1mgJv7KLTwFpawz4E1FG58NDdmfkNsDocg-zr5f55-wtX368LmbTZd4SxmLOgRHDNANVY9VSXVS0qTArtTGEScVq3WJWNbSB9K6Y1lhTANJQDsBbWdFhtuh9tZMbsfd2J_1ROGnFueH8WkgfbbsFUWneakWgZqoodaNZycuaphlGqZLROnk99l57734OEKLYuIPv0vqCNCStkT4RJxbtWa13IXgw16m4EKd8RJ-POOUjLvkk1bhXWQC4KjjHqQr6B4YCjL8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728570811</pqid></control><display><type>article</type><title>A fast EMG-based algorithm for upper-limb motion intention detection by using Levant's differentiators</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Uribe, Mayumi Hori ; Vazquez, Carlos Renato ; Antelis, Javier M.</creator><creatorcontrib>Uribe, Mayumi Hori ; Vazquez, Carlos Renato ; Antelis, Javier M.</creatorcontrib><description>Electromyography (EMG) signals are widely used for predicting human movement intention in the operation of robotic assistive devices that improve the quality of people's lives with motor problems. One of the current challenges controlling such devices is achieving a natural interaction between the device and the user. However, the most common algorithms applied in motion detection exhibit a slow time response. In this work, we propose the use of robust differentiator algorithms to extract features from EMG signals that allow a fast detection of movement intention. Experimental results show that by using robust differentiator algorithms, we can significantly reduce the latency between the detection movement intention and the real movement, without losing accuracy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3214531</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Classification algorithms ; Decoding ; Decoding motion intention ; Delays ; Detectors ; Differentiators ; Electromyography ; Electromyography (EMG) ; Feature extraction ; Human motion ; Motion detection ; Motion perception ; Robots ; Robustness ; Sliding mode control ; Sliding Mode Control (SMC) ; Time response</subject><ispartof>IEEE access, 2022, Vol.10, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-9e82f8d8eb61bc3d05375184dff28ab86dc185737e61bb8dd1d3ee2739ee9ca53</cites><orcidid>0000-0003-4191-4143 ; 0000-0003-3377-0813 ; 0000-0002-7309-4605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9919190$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Uribe, Mayumi Hori</creatorcontrib><creatorcontrib>Vazquez, Carlos Renato</creatorcontrib><creatorcontrib>Antelis, Javier M.</creatorcontrib><title>A fast EMG-based algorithm for upper-limb motion intention detection by using Levant's differentiators</title><title>IEEE access</title><addtitle>Access</addtitle><description>Electromyography (EMG) signals are widely used for predicting human movement intention in the operation of robotic assistive devices that improve the quality of people's lives with motor problems. One of the current challenges controlling such devices is achieving a natural interaction between the device and the user. However, the most common algorithms applied in motion detection exhibit a slow time response. In this work, we propose the use of robust differentiator algorithms to extract features from EMG signals that allow a fast detection of movement intention. Experimental results show that by using robust differentiator algorithms, we can significantly reduce the latency between the detection movement intention and the real movement, without losing accuracy.</description><subject>Algorithms</subject><subject>Classification algorithms</subject><subject>Decoding</subject><subject>Decoding motion intention</subject><subject>Delays</subject><subject>Detectors</subject><subject>Differentiators</subject><subject>Electromyography</subject><subject>Electromyography (EMG)</subject><subject>Feature extraction</subject><subject>Human motion</subject><subject>Motion detection</subject><subject>Motion perception</subject><subject>Robots</subject><subject>Robustness</subject><subject>Sliding mode control</subject><subject>Sliding Mode Control (SMC)</subject><subject>Time response</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1vAiEU3DRtUmP9BV5Ieuhp7QL7AUdjbGti04PtmcDysBhdLGAT_33RNaa8A5PHzLwXJsvGuJhgXPDn6Ww2X60mpCBkQgkuK4pvsgHBNc9pRevbf_g-G4WwKdJhqVU1g8xMkZEhovn7a65kAI3kdu28jd87ZJxHh_0efL61O4V2LlrXIdtF6M5IQ4T2jNQRHYLt1mgJv7KLTwFpawz4E1FG58NDdmfkNsDocg-zr5f55-wtX368LmbTZd4SxmLOgRHDNANVY9VSXVS0qTArtTGEScVq3WJWNbSB9K6Y1lhTANJQDsBbWdFhtuh9tZMbsfd2J_1ROGnFueH8WkgfbbsFUWneakWgZqoodaNZycuaphlGqZLROnk99l57734OEKLYuIPv0vqCNCStkT4RJxbtWa13IXgw16m4EKd8RJ-POOUjLvkk1bhXWQC4KjjHqQr6B4YCjL8</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Uribe, Mayumi Hori</creator><creator>Vazquez, Carlos Renato</creator><creator>Antelis, Javier M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4191-4143</orcidid><orcidid>https://orcid.org/0000-0003-3377-0813</orcidid><orcidid>https://orcid.org/0000-0002-7309-4605</orcidid></search><sort><creationdate>2022</creationdate><title>A fast EMG-based algorithm for upper-limb motion intention detection by using Levant's differentiators</title><author>Uribe, Mayumi Hori ; Vazquez, Carlos Renato ; Antelis, Javier M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-9e82f8d8eb61bc3d05375184dff28ab86dc185737e61bb8dd1d3ee2739ee9ca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Classification algorithms</topic><topic>Decoding</topic><topic>Decoding motion intention</topic><topic>Delays</topic><topic>Detectors</topic><topic>Differentiators</topic><topic>Electromyography</topic><topic>Electromyography (EMG)</topic><topic>Feature extraction</topic><topic>Human motion</topic><topic>Motion detection</topic><topic>Motion perception</topic><topic>Robots</topic><topic>Robustness</topic><topic>Sliding mode control</topic><topic>Sliding Mode Control (SMC)</topic><topic>Time response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uribe, Mayumi Hori</creatorcontrib><creatorcontrib>Vazquez, Carlos Renato</creatorcontrib><creatorcontrib>Antelis, Javier M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uribe, Mayumi Hori</au><au>Vazquez, Carlos Renato</au><au>Antelis, Javier M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast EMG-based algorithm for upper-limb motion intention detection by using Levant's differentiators</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Electromyography (EMG) signals are widely used for predicting human movement intention in the operation of robotic assistive devices that improve the quality of people's lives with motor problems. One of the current challenges controlling such devices is achieving a natural interaction between the device and the user. However, the most common algorithms applied in motion detection exhibit a slow time response. In this work, we propose the use of robust differentiator algorithms to extract features from EMG signals that allow a fast detection of movement intention. Experimental results show that by using robust differentiator algorithms, we can significantly reduce the latency between the detection movement intention and the real movement, without losing accuracy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3214531</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4191-4143</orcidid><orcidid>https://orcid.org/0000-0003-3377-0813</orcidid><orcidid>https://orcid.org/0000-0002-7309-4605</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2728570811 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Classification algorithms Decoding Decoding motion intention Delays Detectors Differentiators Electromyography Electromyography (EMG) Feature extraction Human motion Motion detection Motion perception Robots Robustness Sliding mode control Sliding Mode Control (SMC) Time response |
title | A fast EMG-based algorithm for upper-limb motion intention detection by using Levant's differentiators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A08%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20EMG-based%20algorithm%20for%20upper-limb%20motion%20intention%20detection%20by%20using%20Levant's%20differentiators&rft.jtitle=IEEE%20access&rft.au=Uribe,%20Mayumi%20Hori&rft.date=2022&rft.volume=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3214531&rft_dat=%3Cproquest_ieee_%3E2728570811%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728570811&rft_id=info:pmid/&rft_ieee_id=9919190&rft_doaj_id=oai_doaj_org_article_5d9cdb2e68b04d7d849463b86fbb4836&rfr_iscdi=true |