Design Space Exploration of Interconnect Materials for Cryogenic Operation: Electrical and Thermal Analyses

With Copper (Cu) Interconnects causing performance bottleneck at single nanometer nodes due to increase in resistivity size effects viz., grain boundary scattering and surface scattering, there has always been scavenging for alternate interconnect materials. Although the Cu resistivity value decreas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2022-11, Vol.69 (11), p.4610-4618
Hauptverfasser: Saligram, Rakshith, Datta, Suman, Raychowdhury, Arijit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4618
container_issue 11
container_start_page 4610
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 69
creator Saligram, Rakshith
Datta, Suman
Raychowdhury, Arijit
description With Copper (Cu) Interconnects causing performance bottleneck at single nanometer nodes due to increase in resistivity size effects viz., grain boundary scattering and surface scattering, there has always been scavenging for alternate interconnect materials. Although the Cu resistivity value decreases at cryogenic temperature, the problems continue to persist. In this work, we study three alternate interconnect materials specifically for 77K High Performance Compute applications. We select the materials based on their resistivity value at 77K for 7nm node computed using Fuchs-Sondheimer-Mayadas-Shatzkes (FS-MS) models. We analyze the delay of the interconnects, understand repeater insertion as a function of wire length, evaluate repeater count and energy at system level and perform IR drop analysis by showing through detailed analytical models that Ru, Rh and Al can provide appreciable improvements over Cu at 77K. The delay of interconnects reduces by 1-3.75% for Ru, 1.5-7.25% for Rh and 4.4-17.8% for Al across the BEOL stack while repeater counts decrease by 10%, 15% and 37% for Ru, Rh and Al respectively at 77K. We investigate thermal and reliability aspects of interconnect design including electromigration, Joule Heating and maximum allowed current densities again proving that Ru (9%), Rh (18%) and Al (63%) outperform Cu at 77K. Finally, we study the effects of various Low-k dielectric materials on the interconnect capacitance and thermal behavior for Cu as well as three alternate materials noting that, even though thermal conductivity of dielectrics decrease at 77K, the Joule Heating will not be as worse as one might expect.
doi_str_mv 10.1109/TCSI.2022.3195636
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2728570446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9852671</ieee_id><sourcerecordid>2728570446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-3c0d07c45707d3beff37652683cea0465b2e61dbb5830834b91c5c970ed4b0c63</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYsoOKcfQHwJ-NyZP02a-jbq1MFkD5vPIU1vZ2eX1KQD9-1t6fDpngu_czicKLoneEYIzp62-WY5o5jSGSMZF0xcRBPCuYyxxOJy0EkWS0bldXQTwh5jmmFGJtH3C4R6Z9Gm1QbQ4rdtnNdd7SxyFVraDrxx1oLp0Ifun1o3AVXOo9yf3A5sbdC6hdHxjBZND_ra6AZpW6LtF_hDr-dWN6cA4Ta6qno_3J3vNPp8XWzz93i1flvm81VsaMa6mBlc4tQkPMVpyQqoKpYKToVkBjROBC8oCFIWBZcMS5YUGTHcZCmGMimwEWwaPY65rXc_Rwid2ruj70sERVMq-9wkGSgyUsa7EDxUqvX1QfuTIlgNm6phUzVsqs6b9p6H0VMDwD-fyb5dStgf1CBzUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728570446</pqid></control><display><type>article</type><title>Design Space Exploration of Interconnect Materials for Cryogenic Operation: Electrical and Thermal Analyses</title><source>IEEE Electronic Library (IEL)</source><creator>Saligram, Rakshith ; Datta, Suman ; Raychowdhury, Arijit</creator><creatorcontrib>Saligram, Rakshith ; Datta, Suman ; Raychowdhury, Arijit</creatorcontrib><description>With Copper (Cu) Interconnects causing performance bottleneck at single nanometer nodes due to increase in resistivity size effects viz., grain boundary scattering and surface scattering, there has always been scavenging for alternate interconnect materials. Although the Cu resistivity value decreases at cryogenic temperature, the problems continue to persist. In this work, we study three alternate interconnect materials specifically for 77K High Performance Compute applications. We select the materials based on their resistivity value at 77K for 7nm node computed using Fuchs-Sondheimer-Mayadas-Shatzkes (FS-MS) models. We analyze the delay of the interconnects, understand repeater insertion as a function of wire length, evaluate repeater count and energy at system level and perform IR drop analysis by showing through detailed analytical models that Ru, Rh and Al can provide appreciable improvements over Cu at 77K. The delay of interconnects reduces by 1-3.75% for Ru, 1.5-7.25% for Rh and 4.4-17.8% for Al across the BEOL stack while repeater counts decrease by 10%, 15% and 37% for Ru, Rh and Al respectively at 77K. We investigate thermal and reliability aspects of interconnect design including electromigration, Joule Heating and maximum allowed current densities again proving that Ru (9%), Rh (18%) and Al (63%) outperform Cu at 77K. Finally, we study the effects of various Low-k dielectric materials on the interconnect capacitance and thermal behavior for Cu as well as three alternate materials noting that, even though thermal conductivity of dielectrics decrease at 77K, the Joule Heating will not be as worse as one might expect.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2022.3195636</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alternate interconnects ; Aluminum ; Conductivity ; Copper ; Cryogenic temperature ; cryogenics CMOS ; Delays ; Dielectrics ; Electrical resistivity ; Electromigration ; Grain boundaries ; Integrated circuit interconnections ; Interconnections ; IR drop ; Joule’s heating ; Mathematical models ; Metals ; Ohmic dissipation ; RC delay ; Reliability aspects ; repeater insertion ; Resistance heating ; Ruthenium ; Scattering ; Scavenging ; Size effects ; Thermal conductivity ; Thermodynamic properties ; Wires</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2022-11, Vol.69 (11), p.4610-4618</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-3c0d07c45707d3beff37652683cea0465b2e61dbb5830834b91c5c970ed4b0c63</citedby><cites>FETCH-LOGICAL-c293t-3c0d07c45707d3beff37652683cea0465b2e61dbb5830834b91c5c970ed4b0c63</cites><orcidid>0000-0002-7436-9375 ; 0000-0001-6044-5173 ; 0000-0001-8391-0576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9852671$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9852671$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saligram, Rakshith</creatorcontrib><creatorcontrib>Datta, Suman</creatorcontrib><creatorcontrib>Raychowdhury, Arijit</creatorcontrib><title>Design Space Exploration of Interconnect Materials for Cryogenic Operation: Electrical and Thermal Analyses</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>With Copper (Cu) Interconnects causing performance bottleneck at single nanometer nodes due to increase in resistivity size effects viz., grain boundary scattering and surface scattering, there has always been scavenging for alternate interconnect materials. Although the Cu resistivity value decreases at cryogenic temperature, the problems continue to persist. In this work, we study three alternate interconnect materials specifically for 77K High Performance Compute applications. We select the materials based on their resistivity value at 77K for 7nm node computed using Fuchs-Sondheimer-Mayadas-Shatzkes (FS-MS) models. We analyze the delay of the interconnects, understand repeater insertion as a function of wire length, evaluate repeater count and energy at system level and perform IR drop analysis by showing through detailed analytical models that Ru, Rh and Al can provide appreciable improvements over Cu at 77K. The delay of interconnects reduces by 1-3.75% for Ru, 1.5-7.25% for Rh and 4.4-17.8% for Al across the BEOL stack while repeater counts decrease by 10%, 15% and 37% for Ru, Rh and Al respectively at 77K. We investigate thermal and reliability aspects of interconnect design including electromigration, Joule Heating and maximum allowed current densities again proving that Ru (9%), Rh (18%) and Al (63%) outperform Cu at 77K. Finally, we study the effects of various Low-k dielectric materials on the interconnect capacitance and thermal behavior for Cu as well as three alternate materials noting that, even though thermal conductivity of dielectrics decrease at 77K, the Joule Heating will not be as worse as one might expect.</description><subject>Alternate interconnects</subject><subject>Aluminum</subject><subject>Conductivity</subject><subject>Copper</subject><subject>Cryogenic temperature</subject><subject>cryogenics CMOS</subject><subject>Delays</subject><subject>Dielectrics</subject><subject>Electrical resistivity</subject><subject>Electromigration</subject><subject>Grain boundaries</subject><subject>Integrated circuit interconnections</subject><subject>Interconnections</subject><subject>IR drop</subject><subject>Joule’s heating</subject><subject>Mathematical models</subject><subject>Metals</subject><subject>Ohmic dissipation</subject><subject>RC delay</subject><subject>Reliability aspects</subject><subject>repeater insertion</subject><subject>Resistance heating</subject><subject>Ruthenium</subject><subject>Scattering</subject><subject>Scavenging</subject><subject>Size effects</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><subject>Wires</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYsoOKcfQHwJ-NyZP02a-jbq1MFkD5vPIU1vZ2eX1KQD9-1t6fDpngu_czicKLoneEYIzp62-WY5o5jSGSMZF0xcRBPCuYyxxOJy0EkWS0bldXQTwh5jmmFGJtH3C4R6Z9Gm1QbQ4rdtnNdd7SxyFVraDrxx1oLp0Ifun1o3AVXOo9yf3A5sbdC6hdHxjBZND_ra6AZpW6LtF_hDr-dWN6cA4Ta6qno_3J3vNPp8XWzz93i1flvm81VsaMa6mBlc4tQkPMVpyQqoKpYKToVkBjROBC8oCFIWBZcMS5YUGTHcZCmGMimwEWwaPY65rXc_Rwid2ruj70sERVMq-9wkGSgyUsa7EDxUqvX1QfuTIlgNm6phUzVsqs6b9p6H0VMDwD-fyb5dStgf1CBzUQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Saligram, Rakshith</creator><creator>Datta, Suman</creator><creator>Raychowdhury, Arijit</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7436-9375</orcidid><orcidid>https://orcid.org/0000-0001-6044-5173</orcidid><orcidid>https://orcid.org/0000-0001-8391-0576</orcidid></search><sort><creationdate>20221101</creationdate><title>Design Space Exploration of Interconnect Materials for Cryogenic Operation: Electrical and Thermal Analyses</title><author>Saligram, Rakshith ; Datta, Suman ; Raychowdhury, Arijit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-3c0d07c45707d3beff37652683cea0465b2e61dbb5830834b91c5c970ed4b0c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternate interconnects</topic><topic>Aluminum</topic><topic>Conductivity</topic><topic>Copper</topic><topic>Cryogenic temperature</topic><topic>cryogenics CMOS</topic><topic>Delays</topic><topic>Dielectrics</topic><topic>Electrical resistivity</topic><topic>Electromigration</topic><topic>Grain boundaries</topic><topic>Integrated circuit interconnections</topic><topic>Interconnections</topic><topic>IR drop</topic><topic>Joule’s heating</topic><topic>Mathematical models</topic><topic>Metals</topic><topic>Ohmic dissipation</topic><topic>RC delay</topic><topic>Reliability aspects</topic><topic>repeater insertion</topic><topic>Resistance heating</topic><topic>Ruthenium</topic><topic>Scattering</topic><topic>Scavenging</topic><topic>Size effects</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saligram, Rakshith</creatorcontrib><creatorcontrib>Datta, Suman</creatorcontrib><creatorcontrib>Raychowdhury, Arijit</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saligram, Rakshith</au><au>Datta, Suman</au><au>Raychowdhury, Arijit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Space Exploration of Interconnect Materials for Cryogenic Operation: Electrical and Thermal Analyses</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>69</volume><issue>11</issue><spage>4610</spage><epage>4618</epage><pages>4610-4618</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>With Copper (Cu) Interconnects causing performance bottleneck at single nanometer nodes due to increase in resistivity size effects viz., grain boundary scattering and surface scattering, there has always been scavenging for alternate interconnect materials. Although the Cu resistivity value decreases at cryogenic temperature, the problems continue to persist. In this work, we study three alternate interconnect materials specifically for 77K High Performance Compute applications. We select the materials based on their resistivity value at 77K for 7nm node computed using Fuchs-Sondheimer-Mayadas-Shatzkes (FS-MS) models. We analyze the delay of the interconnects, understand repeater insertion as a function of wire length, evaluate repeater count and energy at system level and perform IR drop analysis by showing through detailed analytical models that Ru, Rh and Al can provide appreciable improvements over Cu at 77K. The delay of interconnects reduces by 1-3.75% for Ru, 1.5-7.25% for Rh and 4.4-17.8% for Al across the BEOL stack while repeater counts decrease by 10%, 15% and 37% for Ru, Rh and Al respectively at 77K. We investigate thermal and reliability aspects of interconnect design including electromigration, Joule Heating and maximum allowed current densities again proving that Ru (9%), Rh (18%) and Al (63%) outperform Cu at 77K. Finally, we study the effects of various Low-k dielectric materials on the interconnect capacitance and thermal behavior for Cu as well as three alternate materials noting that, even though thermal conductivity of dielectrics decrease at 77K, the Joule Heating will not be as worse as one might expect.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2022.3195636</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7436-9375</orcidid><orcidid>https://orcid.org/0000-0001-6044-5173</orcidid><orcidid>https://orcid.org/0000-0001-8391-0576</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2022-11, Vol.69 (11), p.4610-4618
issn 1549-8328
1558-0806
language eng
recordid cdi_proquest_journals_2728570446
source IEEE Electronic Library (IEL)
subjects Alternate interconnects
Aluminum
Conductivity
Copper
Cryogenic temperature
cryogenics CMOS
Delays
Dielectrics
Electrical resistivity
Electromigration
Grain boundaries
Integrated circuit interconnections
Interconnections
IR drop
Joule’s heating
Mathematical models
Metals
Ohmic dissipation
RC delay
Reliability aspects
repeater insertion
Resistance heating
Ruthenium
Scattering
Scavenging
Size effects
Thermal conductivity
Thermodynamic properties
Wires
title Design Space Exploration of Interconnect Materials for Cryogenic Operation: Electrical and Thermal Analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A27%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Space%20Exploration%20of%20Interconnect%20Materials%20for%20Cryogenic%20Operation:%20Electrical%20and%20Thermal%20Analyses&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Saligram,%20Rakshith&rft.date=2022-11-01&rft.volume=69&rft.issue=11&rft.spage=4610&rft.epage=4618&rft.pages=4610-4618&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2022.3195636&rft_dat=%3Cproquest_RIE%3E2728570446%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728570446&rft_id=info:pmid/&rft_ieee_id=9852671&rfr_iscdi=true