Co-clustering on Bipartite Graphs for Robust Model Fitting

Recently, graph-based methods have been widely applied to model fitting. However, in these methods, association information is invariably lost when data points and model hypotheses are mapped to the graph domain. In this paper, we propose a novel model fitting method based on co-clustering on bipart...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2022, Vol.31, p.1-1
Hauptverfasser: Lin, Shuyuan, Luo, Hailing, Yan, Yan, Xiao, Guobao, Wang, Hanzi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on image processing
container_volume 31
creator Lin, Shuyuan
Luo, Hailing
Yan, Yan
Xiao, Guobao
Wang, Hanzi
description Recently, graph-based methods have been widely applied to model fitting. However, in these methods, association information is invariably lost when data points and model hypotheses are mapped to the graph domain. In this paper, we propose a novel model fitting method based on co-clustering on bipartite graphs (CBG) to estimate multiple model instances in data contaminated with outliers and noise. Model fitting is reformulated as a bipartite graph partition behavior. Specifically, we use a bipartite graph reduction technique to eliminate some insignificant vertices (outliers and invalid model hypotheses), thereby improving the reliability of the constructed bipartite graph and reducing the computational complexity. We then use a co-clustering algorithm to learn a structured optimal bipartite graph with exact connected components for partitioning that can directly estimate the model instances (i.e., post-processing steps are not required). The proposed method fully utilizes the duality of data points and model hypotheses on bipartite graphs, leading to superior fitting performance. Exhaustive experiments show that the proposed CBG method performs favorably when compared with several state-of-the-art fitting methods.
doi_str_mv 10.1109/TIP.2022.3214073
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2728569786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9923596</ieee_id><sourcerecordid>2728569786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-d551a416de03edf5ff4575da2f26b9ab7d44c21ba491efde6f19214177c32a2d3</originalsourceid><addsrcrecordid>eNpdkDtPwzAURi0EEqWwI7FEYmFJ8XX8qNmgoqVSEQiV2XJiG1KlcbCTof8eV60YmO4dzncfB6FrwBMALO_Xy_cJwYRMCgIUi-IEjUBSyDGm5DT1mIlcAJXn6CLGDcZAGfARepj5vGqG2NtQt1-Zb7OnutOhr3ubLYLuvmPmfMg-fJmY7NUb22Tzuu8TfInOnG6ivTrWMfqcP69nL_nqbbGcPa7yqiC0zw1joClwY3FhjWPOUSaY0cQRXkpdCkNpRaDUVIJ1xnIHMr0AQqS8JqYYo7vD3C74n8HGXm3rWNmm0a31Q1REEE7xVPIiobf_0I0fQpuu21NTxqWY8kThA1UFH2OwTnWh3uqwU4DVXqZKMtVepjrKTJGbQ6S21v7hUpKCpb2_xEVumw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728569786</pqid></control><display><type>article</type><title>Co-clustering on Bipartite Graphs for Robust Model Fitting</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Shuyuan ; Luo, Hailing ; Yan, Yan ; Xiao, Guobao ; Wang, Hanzi</creator><creatorcontrib>Lin, Shuyuan ; Luo, Hailing ; Yan, Yan ; Xiao, Guobao ; Wang, Hanzi</creatorcontrib><description>Recently, graph-based methods have been widely applied to model fitting. However, in these methods, association information is invariably lost when data points and model hypotheses are mapped to the graph domain. In this paper, we propose a novel model fitting method based on co-clustering on bipartite graphs (CBG) to estimate multiple model instances in data contaminated with outliers and noise. Model fitting is reformulated as a bipartite graph partition behavior. Specifically, we use a bipartite graph reduction technique to eliminate some insignificant vertices (outliers and invalid model hypotheses), thereby improving the reliability of the constructed bipartite graph and reducing the computational complexity. We then use a co-clustering algorithm to learn a structured optimal bipartite graph with exact connected components for partitioning that can directly estimate the model instances (i.e., post-processing steps are not required). The proposed method fully utilizes the duality of data points and model hypotheses on bipartite graphs, leading to superior fitting performance. Exhaustive experiments show that the proposed CBG method performs favorably when compared with several state-of-the-art fitting methods.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2022.3214073</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Analytical models ; Apexes ; Bipartite graph ; bipartite graph partitioning ; Clustering ; Clustering methods ; co-clustering ; Computational modeling ; Data models ; Data points ; Fitting ; Graph theory ; Graphs ; Hypotheses ; multiple models ; multiple-structure data ; Outliers (statistics) ; Partitioning algorithms ; Partitions (mathematics) ; Robust model fitting</subject><ispartof>IEEE transactions on image processing, 2022, Vol.31, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-d551a416de03edf5ff4575da2f26b9ab7d44c21ba491efde6f19214177c32a2d3</citedby><cites>FETCH-LOGICAL-c324t-d551a416de03edf5ff4575da2f26b9ab7d44c21ba491efde6f19214177c32a2d3</cites><orcidid>0000-0002-6913-9786 ; 0000-0003-3247-4625 ; 0000-0003-0683-4711 ; 0000-0003-2928-8100 ; 0000-0002-3674-7160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9923596$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9923596$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, Shuyuan</creatorcontrib><creatorcontrib>Luo, Hailing</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><creatorcontrib>Xiao, Guobao</creatorcontrib><creatorcontrib>Wang, Hanzi</creatorcontrib><title>Co-clustering on Bipartite Graphs for Robust Model Fitting</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>Recently, graph-based methods have been widely applied to model fitting. However, in these methods, association information is invariably lost when data points and model hypotheses are mapped to the graph domain. In this paper, we propose a novel model fitting method based on co-clustering on bipartite graphs (CBG) to estimate multiple model instances in data contaminated with outliers and noise. Model fitting is reformulated as a bipartite graph partition behavior. Specifically, we use a bipartite graph reduction technique to eliminate some insignificant vertices (outliers and invalid model hypotheses), thereby improving the reliability of the constructed bipartite graph and reducing the computational complexity. We then use a co-clustering algorithm to learn a structured optimal bipartite graph with exact connected components for partitioning that can directly estimate the model instances (i.e., post-processing steps are not required). The proposed method fully utilizes the duality of data points and model hypotheses on bipartite graphs, leading to superior fitting performance. Exhaustive experiments show that the proposed CBG method performs favorably when compared with several state-of-the-art fitting methods.</description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Apexes</subject><subject>Bipartite graph</subject><subject>bipartite graph partitioning</subject><subject>Clustering</subject><subject>Clustering methods</subject><subject>co-clustering</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Data points</subject><subject>Fitting</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Hypotheses</subject><subject>multiple models</subject><subject>multiple-structure data</subject><subject>Outliers (statistics)</subject><subject>Partitioning algorithms</subject><subject>Partitions (mathematics)</subject><subject>Robust model fitting</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDtPwzAURi0EEqWwI7FEYmFJ8XX8qNmgoqVSEQiV2XJiG1KlcbCTof8eV60YmO4dzncfB6FrwBMALO_Xy_cJwYRMCgIUi-IEjUBSyDGm5DT1mIlcAJXn6CLGDcZAGfARepj5vGqG2NtQt1-Zb7OnutOhr3ubLYLuvmPmfMg-fJmY7NUb22Tzuu8TfInOnG6ivTrWMfqcP69nL_nqbbGcPa7yqiC0zw1joClwY3FhjWPOUSaY0cQRXkpdCkNpRaDUVIJ1xnIHMr0AQqS8JqYYo7vD3C74n8HGXm3rWNmm0a31Q1REEE7xVPIiobf_0I0fQpuu21NTxqWY8kThA1UFH2OwTnWh3uqwU4DVXqZKMtVepjrKTJGbQ6S21v7hUpKCpb2_xEVumw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lin, Shuyuan</creator><creator>Luo, Hailing</creator><creator>Yan, Yan</creator><creator>Xiao, Guobao</creator><creator>Wang, Hanzi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6913-9786</orcidid><orcidid>https://orcid.org/0000-0003-3247-4625</orcidid><orcidid>https://orcid.org/0000-0003-0683-4711</orcidid><orcidid>https://orcid.org/0000-0003-2928-8100</orcidid><orcidid>https://orcid.org/0000-0002-3674-7160</orcidid></search><sort><creationdate>2022</creationdate><title>Co-clustering on Bipartite Graphs for Robust Model Fitting</title><author>Lin, Shuyuan ; Luo, Hailing ; Yan, Yan ; Xiao, Guobao ; Wang, Hanzi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-d551a416de03edf5ff4575da2f26b9ab7d44c21ba491efde6f19214177c32a2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Apexes</topic><topic>Bipartite graph</topic><topic>bipartite graph partitioning</topic><topic>Clustering</topic><topic>Clustering methods</topic><topic>co-clustering</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Data points</topic><topic>Fitting</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Hypotheses</topic><topic>multiple models</topic><topic>multiple-structure data</topic><topic>Outliers (statistics)</topic><topic>Partitioning algorithms</topic><topic>Partitions (mathematics)</topic><topic>Robust model fitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Shuyuan</creatorcontrib><creatorcontrib>Luo, Hailing</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><creatorcontrib>Xiao, Guobao</creatorcontrib><creatorcontrib>Wang, Hanzi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Shuyuan</au><au>Luo, Hailing</au><au>Yan, Yan</au><au>Xiao, Guobao</au><au>Wang, Hanzi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co-clustering on Bipartite Graphs for Robust Model Fitting</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2022</date><risdate>2022</risdate><volume>31</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Recently, graph-based methods have been widely applied to model fitting. However, in these methods, association information is invariably lost when data points and model hypotheses are mapped to the graph domain. In this paper, we propose a novel model fitting method based on co-clustering on bipartite graphs (CBG) to estimate multiple model instances in data contaminated with outliers and noise. Model fitting is reformulated as a bipartite graph partition behavior. Specifically, we use a bipartite graph reduction technique to eliminate some insignificant vertices (outliers and invalid model hypotheses), thereby improving the reliability of the constructed bipartite graph and reducing the computational complexity. We then use a co-clustering algorithm to learn a structured optimal bipartite graph with exact connected components for partitioning that can directly estimate the model instances (i.e., post-processing steps are not required). The proposed method fully utilizes the duality of data points and model hypotheses on bipartite graphs, leading to superior fitting performance. Exhaustive experiments show that the proposed CBG method performs favorably when compared with several state-of-the-art fitting methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIP.2022.3214073</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6913-9786</orcidid><orcidid>https://orcid.org/0000-0003-3247-4625</orcidid><orcidid>https://orcid.org/0000-0003-0683-4711</orcidid><orcidid>https://orcid.org/0000-0003-2928-8100</orcidid><orcidid>https://orcid.org/0000-0002-3674-7160</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2022, Vol.31, p.1-1
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_journals_2728569786
source IEEE Electronic Library (IEL)
subjects Algorithms
Analytical models
Apexes
Bipartite graph
bipartite graph partitioning
Clustering
Clustering methods
co-clustering
Computational modeling
Data models
Data points
Fitting
Graph theory
Graphs
Hypotheses
multiple models
multiple-structure data
Outliers (statistics)
Partitioning algorithms
Partitions (mathematics)
Robust model fitting
title Co-clustering on Bipartite Graphs for Robust Model Fitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A55%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co-clustering%20on%20Bipartite%20Graphs%20for%20Robust%20Model%20Fitting&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Lin,%20Shuyuan&rft.date=2022&rft.volume=31&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2022.3214073&rft_dat=%3Cproquest_RIE%3E2728569786%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728569786&rft_id=info:pmid/&rft_ieee_id=9923596&rfr_iscdi=true