Co-clustering on Bipartite Graphs for Robust Model Fitting
Recently, graph-based methods have been widely applied to model fitting. However, in these methods, association information is invariably lost when data points and model hypotheses are mapped to the graph domain. In this paper, we propose a novel model fitting method based on co-clustering on bipart...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2022, Vol.31, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on image processing |
container_volume | 31 |
creator | Lin, Shuyuan Luo, Hailing Yan, Yan Xiao, Guobao Wang, Hanzi |
description | Recently, graph-based methods have been widely applied to model fitting. However, in these methods, association information is invariably lost when data points and model hypotheses are mapped to the graph domain. In this paper, we propose a novel model fitting method based on co-clustering on bipartite graphs (CBG) to estimate multiple model instances in data contaminated with outliers and noise. Model fitting is reformulated as a bipartite graph partition behavior. Specifically, we use a bipartite graph reduction technique to eliminate some insignificant vertices (outliers and invalid model hypotheses), thereby improving the reliability of the constructed bipartite graph and reducing the computational complexity. We then use a co-clustering algorithm to learn a structured optimal bipartite graph with exact connected components for partitioning that can directly estimate the model instances (i.e., post-processing steps are not required). The proposed method fully utilizes the duality of data points and model hypotheses on bipartite graphs, leading to superior fitting performance. Exhaustive experiments show that the proposed CBG method performs favorably when compared with several state-of-the-art fitting methods. |
doi_str_mv | 10.1109/TIP.2022.3214073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2728569786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9923596</ieee_id><sourcerecordid>2728569786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-d551a416de03edf5ff4575da2f26b9ab7d44c21ba491efde6f19214177c32a2d3</originalsourceid><addsrcrecordid>eNpdkDtPwzAURi0EEqWwI7FEYmFJ8XX8qNmgoqVSEQiV2XJiG1KlcbCTof8eV60YmO4dzncfB6FrwBMALO_Xy_cJwYRMCgIUi-IEjUBSyDGm5DT1mIlcAJXn6CLGDcZAGfARepj5vGqG2NtQt1-Zb7OnutOhr3ubLYLuvmPmfMg-fJmY7NUb22Tzuu8TfInOnG6ivTrWMfqcP69nL_nqbbGcPa7yqiC0zw1joClwY3FhjWPOUSaY0cQRXkpdCkNpRaDUVIJ1xnIHMr0AQqS8JqYYo7vD3C74n8HGXm3rWNmm0a31Q1REEE7xVPIiobf_0I0fQpuu21NTxqWY8kThA1UFH2OwTnWh3uqwU4DVXqZKMtVepjrKTJGbQ6S21v7hUpKCpb2_xEVumw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728569786</pqid></control><display><type>article</type><title>Co-clustering on Bipartite Graphs for Robust Model Fitting</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Shuyuan ; Luo, Hailing ; Yan, Yan ; Xiao, Guobao ; Wang, Hanzi</creator><creatorcontrib>Lin, Shuyuan ; Luo, Hailing ; Yan, Yan ; Xiao, Guobao ; Wang, Hanzi</creatorcontrib><description>Recently, graph-based methods have been widely applied to model fitting. However, in these methods, association information is invariably lost when data points and model hypotheses are mapped to the graph domain. In this paper, we propose a novel model fitting method based on co-clustering on bipartite graphs (CBG) to estimate multiple model instances in data contaminated with outliers and noise. Model fitting is reformulated as a bipartite graph partition behavior. Specifically, we use a bipartite graph reduction technique to eliminate some insignificant vertices (outliers and invalid model hypotheses), thereby improving the reliability of the constructed bipartite graph and reducing the computational complexity. We then use a co-clustering algorithm to learn a structured optimal bipartite graph with exact connected components for partitioning that can directly estimate the model instances (i.e., post-processing steps are not required). The proposed method fully utilizes the duality of data points and model hypotheses on bipartite graphs, leading to superior fitting performance. Exhaustive experiments show that the proposed CBG method performs favorably when compared with several state-of-the-art fitting methods.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2022.3214073</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Analytical models ; Apexes ; Bipartite graph ; bipartite graph partitioning ; Clustering ; Clustering methods ; co-clustering ; Computational modeling ; Data models ; Data points ; Fitting ; Graph theory ; Graphs ; Hypotheses ; multiple models ; multiple-structure data ; Outliers (statistics) ; Partitioning algorithms ; Partitions (mathematics) ; Robust model fitting</subject><ispartof>IEEE transactions on image processing, 2022, Vol.31, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-d551a416de03edf5ff4575da2f26b9ab7d44c21ba491efde6f19214177c32a2d3</citedby><cites>FETCH-LOGICAL-c324t-d551a416de03edf5ff4575da2f26b9ab7d44c21ba491efde6f19214177c32a2d3</cites><orcidid>0000-0002-6913-9786 ; 0000-0003-3247-4625 ; 0000-0003-0683-4711 ; 0000-0003-2928-8100 ; 0000-0002-3674-7160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9923596$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9923596$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, Shuyuan</creatorcontrib><creatorcontrib>Luo, Hailing</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><creatorcontrib>Xiao, Guobao</creatorcontrib><creatorcontrib>Wang, Hanzi</creatorcontrib><title>Co-clustering on Bipartite Graphs for Robust Model Fitting</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>Recently, graph-based methods have been widely applied to model fitting. However, in these methods, association information is invariably lost when data points and model hypotheses are mapped to the graph domain. In this paper, we propose a novel model fitting method based on co-clustering on bipartite graphs (CBG) to estimate multiple model instances in data contaminated with outliers and noise. Model fitting is reformulated as a bipartite graph partition behavior. Specifically, we use a bipartite graph reduction technique to eliminate some insignificant vertices (outliers and invalid model hypotheses), thereby improving the reliability of the constructed bipartite graph and reducing the computational complexity. We then use a co-clustering algorithm to learn a structured optimal bipartite graph with exact connected components for partitioning that can directly estimate the model instances (i.e., post-processing steps are not required). The proposed method fully utilizes the duality of data points and model hypotheses on bipartite graphs, leading to superior fitting performance. Exhaustive experiments show that the proposed CBG method performs favorably when compared with several state-of-the-art fitting methods.</description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Apexes</subject><subject>Bipartite graph</subject><subject>bipartite graph partitioning</subject><subject>Clustering</subject><subject>Clustering methods</subject><subject>co-clustering</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Data points</subject><subject>Fitting</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Hypotheses</subject><subject>multiple models</subject><subject>multiple-structure data</subject><subject>Outliers (statistics)</subject><subject>Partitioning algorithms</subject><subject>Partitions (mathematics)</subject><subject>Robust model fitting</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDtPwzAURi0EEqWwI7FEYmFJ8XX8qNmgoqVSEQiV2XJiG1KlcbCTof8eV60YmO4dzncfB6FrwBMALO_Xy_cJwYRMCgIUi-IEjUBSyDGm5DT1mIlcAJXn6CLGDcZAGfARepj5vGqG2NtQt1-Zb7OnutOhr3ubLYLuvmPmfMg-fJmY7NUb22Tzuu8TfInOnG6ivTrWMfqcP69nL_nqbbGcPa7yqiC0zw1joClwY3FhjWPOUSaY0cQRXkpdCkNpRaDUVIJ1xnIHMr0AQqS8JqYYo7vD3C74n8HGXm3rWNmm0a31Q1REEE7xVPIiobf_0I0fQpuu21NTxqWY8kThA1UFH2OwTnWh3uqwU4DVXqZKMtVepjrKTJGbQ6S21v7hUpKCpb2_xEVumw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lin, Shuyuan</creator><creator>Luo, Hailing</creator><creator>Yan, Yan</creator><creator>Xiao, Guobao</creator><creator>Wang, Hanzi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6913-9786</orcidid><orcidid>https://orcid.org/0000-0003-3247-4625</orcidid><orcidid>https://orcid.org/0000-0003-0683-4711</orcidid><orcidid>https://orcid.org/0000-0003-2928-8100</orcidid><orcidid>https://orcid.org/0000-0002-3674-7160</orcidid></search><sort><creationdate>2022</creationdate><title>Co-clustering on Bipartite Graphs for Robust Model Fitting</title><author>Lin, Shuyuan ; Luo, Hailing ; Yan, Yan ; Xiao, Guobao ; Wang, Hanzi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-d551a416de03edf5ff4575da2f26b9ab7d44c21ba491efde6f19214177c32a2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Apexes</topic><topic>Bipartite graph</topic><topic>bipartite graph partitioning</topic><topic>Clustering</topic><topic>Clustering methods</topic><topic>co-clustering</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Data points</topic><topic>Fitting</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Hypotheses</topic><topic>multiple models</topic><topic>multiple-structure data</topic><topic>Outliers (statistics)</topic><topic>Partitioning algorithms</topic><topic>Partitions (mathematics)</topic><topic>Robust model fitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Shuyuan</creatorcontrib><creatorcontrib>Luo, Hailing</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><creatorcontrib>Xiao, Guobao</creatorcontrib><creatorcontrib>Wang, Hanzi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Shuyuan</au><au>Luo, Hailing</au><au>Yan, Yan</au><au>Xiao, Guobao</au><au>Wang, Hanzi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co-clustering on Bipartite Graphs for Robust Model Fitting</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2022</date><risdate>2022</risdate><volume>31</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Recently, graph-based methods have been widely applied to model fitting. However, in these methods, association information is invariably lost when data points and model hypotheses are mapped to the graph domain. In this paper, we propose a novel model fitting method based on co-clustering on bipartite graphs (CBG) to estimate multiple model instances in data contaminated with outliers and noise. Model fitting is reformulated as a bipartite graph partition behavior. Specifically, we use a bipartite graph reduction technique to eliminate some insignificant vertices (outliers and invalid model hypotheses), thereby improving the reliability of the constructed bipartite graph and reducing the computational complexity. We then use a co-clustering algorithm to learn a structured optimal bipartite graph with exact connected components for partitioning that can directly estimate the model instances (i.e., post-processing steps are not required). The proposed method fully utilizes the duality of data points and model hypotheses on bipartite graphs, leading to superior fitting performance. Exhaustive experiments show that the proposed CBG method performs favorably when compared with several state-of-the-art fitting methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIP.2022.3214073</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6913-9786</orcidid><orcidid>https://orcid.org/0000-0003-3247-4625</orcidid><orcidid>https://orcid.org/0000-0003-0683-4711</orcidid><orcidid>https://orcid.org/0000-0003-2928-8100</orcidid><orcidid>https://orcid.org/0000-0002-3674-7160</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2022, Vol.31, p.1-1 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_journals_2728569786 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Analytical models Apexes Bipartite graph bipartite graph partitioning Clustering Clustering methods co-clustering Computational modeling Data models Data points Fitting Graph theory Graphs Hypotheses multiple models multiple-structure data Outliers (statistics) Partitioning algorithms Partitions (mathematics) Robust model fitting |
title | Co-clustering on Bipartite Graphs for Robust Model Fitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A55%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co-clustering%20on%20Bipartite%20Graphs%20for%20Robust%20Model%20Fitting&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Lin,%20Shuyuan&rft.date=2022&rft.volume=31&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2022.3214073&rft_dat=%3Cproquest_RIE%3E2728569786%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728569786&rft_id=info:pmid/&rft_ieee_id=9923596&rfr_iscdi=true |