Spatiotemporal Prediction of Urban Online Car-Hailing Travel Demand Based on Transformer Network

Online car-hailing has brought convenience to daily travel, whose accurate prediction benefits drivers and helps managers to grasp the characteristics of urban travel, so as to facilitate decisions. Spatiotemporal prediction in the transportation field has usually been based on a recurrent neural ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-10, Vol.14 (20), p.13568
Hauptverfasser: Bi, Shuoben, Yuan, Cong, Liu, Shaoli, Wang, Luye, Zhang, Lili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page 13568
container_title Sustainability
container_volume 14
creator Bi, Shuoben
Yuan, Cong
Liu, Shaoli
Wang, Luye
Zhang, Lili
description Online car-hailing has brought convenience to daily travel, whose accurate prediction benefits drivers and helps managers to grasp the characteristics of urban travel, so as to facilitate decisions. Spatiotemporal prediction in the transportation field has usually been based on a recurrent neural network (RNN), which has problems such as lengthy computation and backpropagation. This paper describes a model based on a Transformer, which has shown success in computer vision. The study area is divided into grids, and the structure of travel data is converted into video frames by time period, based on predicted spatiotemporal travel demand. The predictions of the model are closest to the real data in terms of spatial distribution and travel demand when the data are divided into 10 min intervals, and the travel demand in the first two hours is used to predict demand in the next hour. We experimentally compare the proposed model with the three most commonly used spatiotemporal prediction models, and the results show that our model has the best accuracy and training speed.
doi_str_mv 10.3390/su142013568
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2728547539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747158822</galeid><sourcerecordid>A747158822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-57acfa6312583d0aad5253eec0a8acc037c3a9ca2cc7c9017c3d01f9b001c15a3</originalsourceid><addsrcrecordid>eNpVkU1PwkAQhhujiQQ5-Qc28WRMcT9Ytj0ifkBCxAic67CdkmK7i7utH__eNXiAmcPMvHnemcNE0SWjfSFSeutbNuCUCTlMTqIOp4rFjEp6etCfRz3vtzSEECxlw070tthBU9oG6511UJEXh3mpg2KILcjKrcGQualKg2QMLp5AGfoNWTr4xIrcYw0mJ3fgMSfBEmTjC-tqdOQZmy_r3i-iswIqj73_2o1Wjw_L8SSezZ-m49Es1kKxJpYKdAFDwbhMRE4BcsmlQNQUEtCaCqUFpBq41kqnlIUxp6xI15QyzSSIbnS137tz9qNF32Rb2zoTTmZc8UQOlBRpoPp7agMVZqUpbONAh8yxLrU1WJRBH6mBYjJJOA-G6yNDYBr8bjbQep9NF6_H7M2e1c5677DIdq6swf1kjGZ_L8oOXiR-Ad2jgms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728547539</pqid></control><display><type>article</type><title>Spatiotemporal Prediction of Urban Online Car-Hailing Travel Demand Based on Transformer Network</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bi, Shuoben ; Yuan, Cong ; Liu, Shaoli ; Wang, Luye ; Zhang, Lili</creator><creatorcontrib>Bi, Shuoben ; Yuan, Cong ; Liu, Shaoli ; Wang, Luye ; Zhang, Lili</creatorcontrib><description>Online car-hailing has brought convenience to daily travel, whose accurate prediction benefits drivers and helps managers to grasp the characteristics of urban travel, so as to facilitate decisions. Spatiotemporal prediction in the transportation field has usually been based on a recurrent neural network (RNN), which has problems such as lengthy computation and backpropagation. This paper describes a model based on a Transformer, which has shown success in computer vision. The study area is divided into grids, and the structure of travel data is converted into video frames by time period, based on predicted spatiotemporal travel demand. The predictions of the model are closest to the real data in terms of spatial distribution and travel demand when the data are divided into 10 min intervals, and the travel demand in the first two hours is used to predict demand in the next hour. We experimentally compare the proposed model with the three most commonly used spatiotemporal prediction models, and the results show that our model has the best accuracy and training speed.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su142013568</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Back propagation ; Back propagation networks ; Computational linguistics ; Computer vision ; Coronaviruses ; COVID-19 ; Deep learning ; Forecasts and trends ; Language processing ; Machine vision ; Natural language interfaces ; Neural networks ; Online travel services ; Prediction models ; Public transportation ; Recurrent neural networks ; Ridesharing ; Spatial distribution ; Supply and demand ; Time series ; Traffic congestion ; Traffic flow ; Transportation networks ; Transportation services ; Travel ; Travel demand ; Urban transportation</subject><ispartof>Sustainability, 2022-10, Vol.14 (20), p.13568</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-57acfa6312583d0aad5253eec0a8acc037c3a9ca2cc7c9017c3d01f9b001c15a3</citedby><cites>FETCH-LOGICAL-c371t-57acfa6312583d0aad5253eec0a8acc037c3a9ca2cc7c9017c3d01f9b001c15a3</cites><orcidid>0000-0002-7295-1716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bi, Shuoben</creatorcontrib><creatorcontrib>Yuan, Cong</creatorcontrib><creatorcontrib>Liu, Shaoli</creatorcontrib><creatorcontrib>Wang, Luye</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><title>Spatiotemporal Prediction of Urban Online Car-Hailing Travel Demand Based on Transformer Network</title><title>Sustainability</title><description>Online car-hailing has brought convenience to daily travel, whose accurate prediction benefits drivers and helps managers to grasp the characteristics of urban travel, so as to facilitate decisions. Spatiotemporal prediction in the transportation field has usually been based on a recurrent neural network (RNN), which has problems such as lengthy computation and backpropagation. This paper describes a model based on a Transformer, which has shown success in computer vision. The study area is divided into grids, and the structure of travel data is converted into video frames by time period, based on predicted spatiotemporal travel demand. The predictions of the model are closest to the real data in terms of spatial distribution and travel demand when the data are divided into 10 min intervals, and the travel demand in the first two hours is used to predict demand in the next hour. We experimentally compare the proposed model with the three most commonly used spatiotemporal prediction models, and the results show that our model has the best accuracy and training speed.</description><subject>Accuracy</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Computational linguistics</subject><subject>Computer vision</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Deep learning</subject><subject>Forecasts and trends</subject><subject>Language processing</subject><subject>Machine vision</subject><subject>Natural language interfaces</subject><subject>Neural networks</subject><subject>Online travel services</subject><subject>Prediction models</subject><subject>Public transportation</subject><subject>Recurrent neural networks</subject><subject>Ridesharing</subject><subject>Spatial distribution</subject><subject>Supply and demand</subject><subject>Time series</subject><subject>Traffic congestion</subject><subject>Traffic flow</subject><subject>Transportation networks</subject><subject>Transportation services</subject><subject>Travel</subject><subject>Travel demand</subject><subject>Urban transportation</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkU1PwkAQhhujiQQ5-Qc28WRMcT9Ytj0ifkBCxAic67CdkmK7i7utH__eNXiAmcPMvHnemcNE0SWjfSFSeutbNuCUCTlMTqIOp4rFjEp6etCfRz3vtzSEECxlw070tthBU9oG6511UJEXh3mpg2KILcjKrcGQualKg2QMLp5AGfoNWTr4xIrcYw0mJ3fgMSfBEmTjC-tqdOQZmy_r3i-iswIqj73_2o1Wjw_L8SSezZ-m49Es1kKxJpYKdAFDwbhMRE4BcsmlQNQUEtCaCqUFpBq41kqnlIUxp6xI15QyzSSIbnS137tz9qNF32Rb2zoTTmZc8UQOlBRpoPp7agMVZqUpbONAh8yxLrU1WJRBH6mBYjJJOA-G6yNDYBr8bjbQep9NF6_H7M2e1c5677DIdq6swf1kjGZ_L8oOXiR-Ad2jgms</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Bi, Shuoben</creator><creator>Yuan, Cong</creator><creator>Liu, Shaoli</creator><creator>Wang, Luye</creator><creator>Zhang, Lili</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7295-1716</orcidid></search><sort><creationdate>20221001</creationdate><title>Spatiotemporal Prediction of Urban Online Car-Hailing Travel Demand Based on Transformer Network</title><author>Bi, Shuoben ; Yuan, Cong ; Liu, Shaoli ; Wang, Luye ; Zhang, Lili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-57acfa6312583d0aad5253eec0a8acc037c3a9ca2cc7c9017c3d01f9b001c15a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Computational linguistics</topic><topic>Computer vision</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Deep learning</topic><topic>Forecasts and trends</topic><topic>Language processing</topic><topic>Machine vision</topic><topic>Natural language interfaces</topic><topic>Neural networks</topic><topic>Online travel services</topic><topic>Prediction models</topic><topic>Public transportation</topic><topic>Recurrent neural networks</topic><topic>Ridesharing</topic><topic>Spatial distribution</topic><topic>Supply and demand</topic><topic>Time series</topic><topic>Traffic congestion</topic><topic>Traffic flow</topic><topic>Transportation networks</topic><topic>Transportation services</topic><topic>Travel</topic><topic>Travel demand</topic><topic>Urban transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Shuoben</creatorcontrib><creatorcontrib>Yuan, Cong</creatorcontrib><creatorcontrib>Liu, Shaoli</creatorcontrib><creatorcontrib>Wang, Luye</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, Shuoben</au><au>Yuan, Cong</au><au>Liu, Shaoli</au><au>Wang, Luye</au><au>Zhang, Lili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal Prediction of Urban Online Car-Hailing Travel Demand Based on Transformer Network</atitle><jtitle>Sustainability</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>14</volume><issue>20</issue><spage>13568</spage><pages>13568-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Online car-hailing has brought convenience to daily travel, whose accurate prediction benefits drivers and helps managers to grasp the characteristics of urban travel, so as to facilitate decisions. Spatiotemporal prediction in the transportation field has usually been based on a recurrent neural network (RNN), which has problems such as lengthy computation and backpropagation. This paper describes a model based on a Transformer, which has shown success in computer vision. The study area is divided into grids, and the structure of travel data is converted into video frames by time period, based on predicted spatiotemporal travel demand. The predictions of the model are closest to the real data in terms of spatial distribution and travel demand when the data are divided into 10 min intervals, and the travel demand in the first two hours is used to predict demand in the next hour. We experimentally compare the proposed model with the three most commonly used spatiotemporal prediction models, and the results show that our model has the best accuracy and training speed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su142013568</doi><orcidid>https://orcid.org/0000-0002-7295-1716</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2022-10, Vol.14 (20), p.13568
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2728547539
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Back propagation
Back propagation networks
Computational linguistics
Computer vision
Coronaviruses
COVID-19
Deep learning
Forecasts and trends
Language processing
Machine vision
Natural language interfaces
Neural networks
Online travel services
Prediction models
Public transportation
Recurrent neural networks
Ridesharing
Spatial distribution
Supply and demand
Time series
Traffic congestion
Traffic flow
Transportation networks
Transportation services
Travel
Travel demand
Urban transportation
title Spatiotemporal Prediction of Urban Online Car-Hailing Travel Demand Based on Transformer Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A48%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20Prediction%20of%20Urban%20Online%20Car-Hailing%20Travel%20Demand%20Based%20on%20Transformer%20Network&rft.jtitle=Sustainability&rft.au=Bi,%20Shuoben&rft.date=2022-10-01&rft.volume=14&rft.issue=20&rft.spage=13568&rft.pages=13568-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su142013568&rft_dat=%3Cgale_proqu%3EA747158822%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728547539&rft_id=info:pmid/&rft_galeid=A747158822&rfr_iscdi=true