Scheduling Large-Size Identical Parallel Machines with Single Server Using a Novel Heuristic-Guided Genetic Algorithm (DAS/GA) Approach
Parallel Machine Scheduling (PMS) is a well-known problem in modern manufacturing. It is an optimization problem aiming to schedule n jobs using m machines while fulfilling certain practical requirements, such as total tardiness. Traditional approaches, e.g., mix integer programming and Genetic Algo...
Gespeichert in:
Veröffentlicht in: | Processes 2022-10, Vol.10 (10), p.2071 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 2071 |
container_title | Processes |
container_volume | 10 |
creator | Abu-Shams, Mohammad Ramadan, Saleem Al-Dahidi, Sameer Abdallah, Abdallah |
description | Parallel Machine Scheduling (PMS) is a well-known problem in modern manufacturing. It is an optimization problem aiming to schedule n jobs using m machines while fulfilling certain practical requirements, such as total tardiness. Traditional approaches, e.g., mix integer programming and Genetic Algorithm (GA), usually fail, particularly in large-size PMS problems, due to computational time and/or memory burden and the large searching space required, respectively. This work aims to overcome such challenges by proposing a heuristic-based GA (DAS/GA). Specifically, a large-scale PMS problem with n independent jobs and m identical machines with a single server is studied. Individual heuristic algorithms (DAS) and GA are used as benchmarks to verify the performance of the proposed combined DAS/GA on 18 benchmark problems established to cover small, medium, and large PMS problems concerning standard performance metrics from the literature and a new metric proposed in this work (standardized overall total tardiness). Computational experiments showed that the heuristic part (DAS-h) of the proposed algorithm significantly enhanced the performance of the GA for large-size problems. The results indicated that the proposed algorithm should only be used for large-scale PMS problems because DAS-h trapped GA in a region of local optima, limiting its capabilities in small- and mainly medium-sized problems. |
doi_str_mv | 10.3390/pr10102071 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2728523761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744992984</galeid><sourcerecordid>A744992984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-62cbf284e5841b3ca055c95f8e16e2b373066350e4fc466694e7a0f17076981b3</originalsourceid><addsrcrecordid>eNpNkclOwzAQhiMEEhVw4QkscQGkUG-x42PEUiqVRQqcI9eZtK7cpNhJEbwAr41RkWDmMIv-75_DJMkpwVeMKTzeeIIJpliSvWREKZWpkkTu_-sPk5MQVjiGIizPxCj5Ks0S6sHZdoFm2i8gLe0noGkNbW-NduhZe-0cOPSgzdK2ENC77ZeojIADVILfgkev4YfX6LHbRuU9DN6GiKeTwdZQowm0EEdUuEXnI71G5zdFOZ4UF6jYbHwXnY-Tg0a7ACe_9Sh5vbt9ub5PZ0-T6XUxSw1jvE8FNfOG5hyynJM5MxpnmVFZkwMRQOdMMiwEyzDwxnAhhOIgNW6IxFKoPBJHydnON559GyD01aobfBtPVlTSPKNMChJVVzvVQjuobNt0vdcmZg1ra7oWGhv3heRcKapyHoHLHWB8F4KHptp4u9b-oyK4-nlO9fcc9g31Nn-_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728523761</pqid></control><display><type>article</type><title>Scheduling Large-Size Identical Parallel Machines with Single Server Using a Novel Heuristic-Guided Genetic Algorithm (DAS/GA) Approach</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Abu-Shams, Mohammad ; Ramadan, Saleem ; Al-Dahidi, Sameer ; Abdallah, Abdallah</creator><creatorcontrib>Abu-Shams, Mohammad ; Ramadan, Saleem ; Al-Dahidi, Sameer ; Abdallah, Abdallah</creatorcontrib><description>Parallel Machine Scheduling (PMS) is a well-known problem in modern manufacturing. It is an optimization problem aiming to schedule n jobs using m machines while fulfilling certain practical requirements, such as total tardiness. Traditional approaches, e.g., mix integer programming and Genetic Algorithm (GA), usually fail, particularly in large-size PMS problems, due to computational time and/or memory burden and the large searching space required, respectively. This work aims to overcome such challenges by proposing a heuristic-based GA (DAS/GA). Specifically, a large-scale PMS problem with n independent jobs and m identical machines with a single server is studied. Individual heuristic algorithms (DAS) and GA are used as benchmarks to verify the performance of the proposed combined DAS/GA on 18 benchmark problems established to cover small, medium, and large PMS problems concerning standard performance metrics from the literature and a new metric proposed in this work (standardized overall total tardiness). Computational experiments showed that the heuristic part (DAS-h) of the proposed algorithm significantly enhanced the performance of the GA for large-size problems. The results indicated that the proposed algorithm should only be used for large-scale PMS problems because DAS-h trapped GA in a region of local optima, limiting its capabilities in small- and mainly medium-sized problems.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr10102071</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Benchmarks ; Computer applications ; Computing time ; Employment ; File servers ; Genetic algorithms ; Genetic research ; Heuristic ; Heuristic methods ; Integer programming ; Lateness ; Optimization ; Optimization techniques ; Performance evaluation ; Performance measurement ; Problem solving ; Scheduling ; Servers</subject><ispartof>Processes, 2022-10, Vol.10 (10), p.2071</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-62cbf284e5841b3ca055c95f8e16e2b373066350e4fc466694e7a0f17076981b3</citedby><cites>FETCH-LOGICAL-c334t-62cbf284e5841b3ca055c95f8e16e2b373066350e4fc466694e7a0f17076981b3</cites><orcidid>0000-0002-7745-7784 ; 0000-0001-6683-9878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Abu-Shams, Mohammad</creatorcontrib><creatorcontrib>Ramadan, Saleem</creatorcontrib><creatorcontrib>Al-Dahidi, Sameer</creatorcontrib><creatorcontrib>Abdallah, Abdallah</creatorcontrib><title>Scheduling Large-Size Identical Parallel Machines with Single Server Using a Novel Heuristic-Guided Genetic Algorithm (DAS/GA) Approach</title><title>Processes</title><description>Parallel Machine Scheduling (PMS) is a well-known problem in modern manufacturing. It is an optimization problem aiming to schedule n jobs using m machines while fulfilling certain practical requirements, such as total tardiness. Traditional approaches, e.g., mix integer programming and Genetic Algorithm (GA), usually fail, particularly in large-size PMS problems, due to computational time and/or memory burden and the large searching space required, respectively. This work aims to overcome such challenges by proposing a heuristic-based GA (DAS/GA). Specifically, a large-scale PMS problem with n independent jobs and m identical machines with a single server is studied. Individual heuristic algorithms (DAS) and GA are used as benchmarks to verify the performance of the proposed combined DAS/GA on 18 benchmark problems established to cover small, medium, and large PMS problems concerning standard performance metrics from the literature and a new metric proposed in this work (standardized overall total tardiness). Computational experiments showed that the heuristic part (DAS-h) of the proposed algorithm significantly enhanced the performance of the GA for large-size problems. The results indicated that the proposed algorithm should only be used for large-scale PMS problems because DAS-h trapped GA in a region of local optima, limiting its capabilities in small- and mainly medium-sized problems.</description><subject>Algorithms</subject><subject>Benchmarks</subject><subject>Computer applications</subject><subject>Computing time</subject><subject>Employment</subject><subject>File servers</subject><subject>Genetic algorithms</subject><subject>Genetic research</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Integer programming</subject><subject>Lateness</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Performance evaluation</subject><subject>Performance measurement</subject><subject>Problem solving</subject><subject>Scheduling</subject><subject>Servers</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkclOwzAQhiMEEhVw4QkscQGkUG-x42PEUiqVRQqcI9eZtK7cpNhJEbwAr41RkWDmMIv-75_DJMkpwVeMKTzeeIIJpliSvWREKZWpkkTu_-sPk5MQVjiGIizPxCj5Ks0S6sHZdoFm2i8gLe0noGkNbW-NduhZe-0cOPSgzdK2ENC77ZeojIADVILfgkev4YfX6LHbRuU9DN6GiKeTwdZQowm0EEdUuEXnI71G5zdFOZ4UF6jYbHwXnY-Tg0a7ACe_9Sh5vbt9ub5PZ0-T6XUxSw1jvE8FNfOG5hyynJM5MxpnmVFZkwMRQOdMMiwEyzDwxnAhhOIgNW6IxFKoPBJHydnON559GyD01aobfBtPVlTSPKNMChJVVzvVQjuobNt0vdcmZg1ra7oWGhv3heRcKapyHoHLHWB8F4KHptp4u9b-oyK4-nlO9fcc9g31Nn-_</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Abu-Shams, Mohammad</creator><creator>Ramadan, Saleem</creator><creator>Al-Dahidi, Sameer</creator><creator>Abdallah, Abdallah</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7745-7784</orcidid><orcidid>https://orcid.org/0000-0001-6683-9878</orcidid></search><sort><creationdate>20221001</creationdate><title>Scheduling Large-Size Identical Parallel Machines with Single Server Using a Novel Heuristic-Guided Genetic Algorithm (DAS/GA) Approach</title><author>Abu-Shams, Mohammad ; Ramadan, Saleem ; Al-Dahidi, Sameer ; Abdallah, Abdallah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-62cbf284e5841b3ca055c95f8e16e2b373066350e4fc466694e7a0f17076981b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Benchmarks</topic><topic>Computer applications</topic><topic>Computing time</topic><topic>Employment</topic><topic>File servers</topic><topic>Genetic algorithms</topic><topic>Genetic research</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Integer programming</topic><topic>Lateness</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Performance evaluation</topic><topic>Performance measurement</topic><topic>Problem solving</topic><topic>Scheduling</topic><topic>Servers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abu-Shams, Mohammad</creatorcontrib><creatorcontrib>Ramadan, Saleem</creatorcontrib><creatorcontrib>Al-Dahidi, Sameer</creatorcontrib><creatorcontrib>Abdallah, Abdallah</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abu-Shams, Mohammad</au><au>Ramadan, Saleem</au><au>Al-Dahidi, Sameer</au><au>Abdallah, Abdallah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scheduling Large-Size Identical Parallel Machines with Single Server Using a Novel Heuristic-Guided Genetic Algorithm (DAS/GA) Approach</atitle><jtitle>Processes</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>10</volume><issue>10</issue><spage>2071</spage><pages>2071-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Parallel Machine Scheduling (PMS) is a well-known problem in modern manufacturing. It is an optimization problem aiming to schedule n jobs using m machines while fulfilling certain practical requirements, such as total tardiness. Traditional approaches, e.g., mix integer programming and Genetic Algorithm (GA), usually fail, particularly in large-size PMS problems, due to computational time and/or memory burden and the large searching space required, respectively. This work aims to overcome such challenges by proposing a heuristic-based GA (DAS/GA). Specifically, a large-scale PMS problem with n independent jobs and m identical machines with a single server is studied. Individual heuristic algorithms (DAS) and GA are used as benchmarks to verify the performance of the proposed combined DAS/GA on 18 benchmark problems established to cover small, medium, and large PMS problems concerning standard performance metrics from the literature and a new metric proposed in this work (standardized overall total tardiness). Computational experiments showed that the heuristic part (DAS-h) of the proposed algorithm significantly enhanced the performance of the GA for large-size problems. The results indicated that the proposed algorithm should only be used for large-scale PMS problems because DAS-h trapped GA in a region of local optima, limiting its capabilities in small- and mainly medium-sized problems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr10102071</doi><orcidid>https://orcid.org/0000-0002-7745-7784</orcidid><orcidid>https://orcid.org/0000-0001-6683-9878</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2022-10, Vol.10 (10), p.2071 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2728523761 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Benchmarks Computer applications Computing time Employment File servers Genetic algorithms Genetic research Heuristic Heuristic methods Integer programming Lateness Optimization Optimization techniques Performance evaluation Performance measurement Problem solving Scheduling Servers |
title | Scheduling Large-Size Identical Parallel Machines with Single Server Using a Novel Heuristic-Guided Genetic Algorithm (DAS/GA) Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scheduling%20Large-Size%20Identical%20Parallel%20Machines%20with%20Single%20Server%20Using%20a%20Novel%20Heuristic-Guided%20Genetic%20Algorithm%20(DAS/GA)%20Approach&rft.jtitle=Processes&rft.au=Abu-Shams,%20Mohammad&rft.date=2022-10-01&rft.volume=10&rft.issue=10&rft.spage=2071&rft.pages=2071-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr10102071&rft_dat=%3Cgale_proqu%3EA744992984%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728523761&rft_id=info:pmid/&rft_galeid=A744992984&rfr_iscdi=true |