Scheduling Large-Size Identical Parallel Machines with Single Server Using a Novel Heuristic-Guided Genetic Algorithm (DAS/GA) Approach

Parallel Machine Scheduling (PMS) is a well-known problem in modern manufacturing. It is an optimization problem aiming to schedule n jobs using m machines while fulfilling certain practical requirements, such as total tardiness. Traditional approaches, e.g., mix integer programming and Genetic Algo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2022-10, Vol.10 (10), p.2071
Hauptverfasser: Abu-Shams, Mohammad, Ramadan, Saleem, Al-Dahidi, Sameer, Abdallah, Abdallah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 2071
container_title Processes
container_volume 10
creator Abu-Shams, Mohammad
Ramadan, Saleem
Al-Dahidi, Sameer
Abdallah, Abdallah
description Parallel Machine Scheduling (PMS) is a well-known problem in modern manufacturing. It is an optimization problem aiming to schedule n jobs using m machines while fulfilling certain practical requirements, such as total tardiness. Traditional approaches, e.g., mix integer programming and Genetic Algorithm (GA), usually fail, particularly in large-size PMS problems, due to computational time and/or memory burden and the large searching space required, respectively. This work aims to overcome such challenges by proposing a heuristic-based GA (DAS/GA). Specifically, a large-scale PMS problem with n independent jobs and m identical machines with a single server is studied. Individual heuristic algorithms (DAS) and GA are used as benchmarks to verify the performance of the proposed combined DAS/GA on 18 benchmark problems established to cover small, medium, and large PMS problems concerning standard performance metrics from the literature and a new metric proposed in this work (standardized overall total tardiness). Computational experiments showed that the heuristic part (DAS-h) of the proposed algorithm significantly enhanced the performance of the GA for large-size problems. The results indicated that the proposed algorithm should only be used for large-scale PMS problems because DAS-h trapped GA in a region of local optima, limiting its capabilities in small- and mainly medium-sized problems.
doi_str_mv 10.3390/pr10102071
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2728523761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744992984</galeid><sourcerecordid>A744992984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-62cbf284e5841b3ca055c95f8e16e2b373066350e4fc466694e7a0f17076981b3</originalsourceid><addsrcrecordid>eNpNkclOwzAQhiMEEhVw4QkscQGkUG-x42PEUiqVRQqcI9eZtK7cpNhJEbwAr41RkWDmMIv-75_DJMkpwVeMKTzeeIIJpliSvWREKZWpkkTu_-sPk5MQVjiGIizPxCj5Ks0S6sHZdoFm2i8gLe0noGkNbW-NduhZe-0cOPSgzdK2ENC77ZeojIADVILfgkev4YfX6LHbRuU9DN6GiKeTwdZQowm0EEdUuEXnI71G5zdFOZ4UF6jYbHwXnY-Tg0a7ACe_9Sh5vbt9ub5PZ0-T6XUxSw1jvE8FNfOG5hyynJM5MxpnmVFZkwMRQOdMMiwEyzDwxnAhhOIgNW6IxFKoPBJHydnON559GyD01aobfBtPVlTSPKNMChJVVzvVQjuobNt0vdcmZg1ra7oWGhv3heRcKapyHoHLHWB8F4KHptp4u9b-oyK4-nlO9fcc9g31Nn-_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728523761</pqid></control><display><type>article</type><title>Scheduling Large-Size Identical Parallel Machines with Single Server Using a Novel Heuristic-Guided Genetic Algorithm (DAS/GA) Approach</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Abu-Shams, Mohammad ; Ramadan, Saleem ; Al-Dahidi, Sameer ; Abdallah, Abdallah</creator><creatorcontrib>Abu-Shams, Mohammad ; Ramadan, Saleem ; Al-Dahidi, Sameer ; Abdallah, Abdallah</creatorcontrib><description>Parallel Machine Scheduling (PMS) is a well-known problem in modern manufacturing. It is an optimization problem aiming to schedule n jobs using m machines while fulfilling certain practical requirements, such as total tardiness. Traditional approaches, e.g., mix integer programming and Genetic Algorithm (GA), usually fail, particularly in large-size PMS problems, due to computational time and/or memory burden and the large searching space required, respectively. This work aims to overcome such challenges by proposing a heuristic-based GA (DAS/GA). Specifically, a large-scale PMS problem with n independent jobs and m identical machines with a single server is studied. Individual heuristic algorithms (DAS) and GA are used as benchmarks to verify the performance of the proposed combined DAS/GA on 18 benchmark problems established to cover small, medium, and large PMS problems concerning standard performance metrics from the literature and a new metric proposed in this work (standardized overall total tardiness). Computational experiments showed that the heuristic part (DAS-h) of the proposed algorithm significantly enhanced the performance of the GA for large-size problems. The results indicated that the proposed algorithm should only be used for large-scale PMS problems because DAS-h trapped GA in a region of local optima, limiting its capabilities in small- and mainly medium-sized problems.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr10102071</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Benchmarks ; Computer applications ; Computing time ; Employment ; File servers ; Genetic algorithms ; Genetic research ; Heuristic ; Heuristic methods ; Integer programming ; Lateness ; Optimization ; Optimization techniques ; Performance evaluation ; Performance measurement ; Problem solving ; Scheduling ; Servers</subject><ispartof>Processes, 2022-10, Vol.10 (10), p.2071</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-62cbf284e5841b3ca055c95f8e16e2b373066350e4fc466694e7a0f17076981b3</citedby><cites>FETCH-LOGICAL-c334t-62cbf284e5841b3ca055c95f8e16e2b373066350e4fc466694e7a0f17076981b3</cites><orcidid>0000-0002-7745-7784 ; 0000-0001-6683-9878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Abu-Shams, Mohammad</creatorcontrib><creatorcontrib>Ramadan, Saleem</creatorcontrib><creatorcontrib>Al-Dahidi, Sameer</creatorcontrib><creatorcontrib>Abdallah, Abdallah</creatorcontrib><title>Scheduling Large-Size Identical Parallel Machines with Single Server Using a Novel Heuristic-Guided Genetic Algorithm (DAS/GA) Approach</title><title>Processes</title><description>Parallel Machine Scheduling (PMS) is a well-known problem in modern manufacturing. It is an optimization problem aiming to schedule n jobs using m machines while fulfilling certain practical requirements, such as total tardiness. Traditional approaches, e.g., mix integer programming and Genetic Algorithm (GA), usually fail, particularly in large-size PMS problems, due to computational time and/or memory burden and the large searching space required, respectively. This work aims to overcome such challenges by proposing a heuristic-based GA (DAS/GA). Specifically, a large-scale PMS problem with n independent jobs and m identical machines with a single server is studied. Individual heuristic algorithms (DAS) and GA are used as benchmarks to verify the performance of the proposed combined DAS/GA on 18 benchmark problems established to cover small, medium, and large PMS problems concerning standard performance metrics from the literature and a new metric proposed in this work (standardized overall total tardiness). Computational experiments showed that the heuristic part (DAS-h) of the proposed algorithm significantly enhanced the performance of the GA for large-size problems. The results indicated that the proposed algorithm should only be used for large-scale PMS problems because DAS-h trapped GA in a region of local optima, limiting its capabilities in small- and mainly medium-sized problems.</description><subject>Algorithms</subject><subject>Benchmarks</subject><subject>Computer applications</subject><subject>Computing time</subject><subject>Employment</subject><subject>File servers</subject><subject>Genetic algorithms</subject><subject>Genetic research</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Integer programming</subject><subject>Lateness</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Performance evaluation</subject><subject>Performance measurement</subject><subject>Problem solving</subject><subject>Scheduling</subject><subject>Servers</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkclOwzAQhiMEEhVw4QkscQGkUG-x42PEUiqVRQqcI9eZtK7cpNhJEbwAr41RkWDmMIv-75_DJMkpwVeMKTzeeIIJpliSvWREKZWpkkTu_-sPk5MQVjiGIizPxCj5Ks0S6sHZdoFm2i8gLe0noGkNbW-NduhZe-0cOPSgzdK2ENC77ZeojIADVILfgkev4YfX6LHbRuU9DN6GiKeTwdZQowm0EEdUuEXnI71G5zdFOZ4UF6jYbHwXnY-Tg0a7ACe_9Sh5vbt9ub5PZ0-T6XUxSw1jvE8FNfOG5hyynJM5MxpnmVFZkwMRQOdMMiwEyzDwxnAhhOIgNW6IxFKoPBJHydnON559GyD01aobfBtPVlTSPKNMChJVVzvVQjuobNt0vdcmZg1ra7oWGhv3heRcKapyHoHLHWB8F4KHptp4u9b-oyK4-nlO9fcc9g31Nn-_</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Abu-Shams, Mohammad</creator><creator>Ramadan, Saleem</creator><creator>Al-Dahidi, Sameer</creator><creator>Abdallah, Abdallah</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7745-7784</orcidid><orcidid>https://orcid.org/0000-0001-6683-9878</orcidid></search><sort><creationdate>20221001</creationdate><title>Scheduling Large-Size Identical Parallel Machines with Single Server Using a Novel Heuristic-Guided Genetic Algorithm (DAS/GA) Approach</title><author>Abu-Shams, Mohammad ; Ramadan, Saleem ; Al-Dahidi, Sameer ; Abdallah, Abdallah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-62cbf284e5841b3ca055c95f8e16e2b373066350e4fc466694e7a0f17076981b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Benchmarks</topic><topic>Computer applications</topic><topic>Computing time</topic><topic>Employment</topic><topic>File servers</topic><topic>Genetic algorithms</topic><topic>Genetic research</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Integer programming</topic><topic>Lateness</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Performance evaluation</topic><topic>Performance measurement</topic><topic>Problem solving</topic><topic>Scheduling</topic><topic>Servers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abu-Shams, Mohammad</creatorcontrib><creatorcontrib>Ramadan, Saleem</creatorcontrib><creatorcontrib>Al-Dahidi, Sameer</creatorcontrib><creatorcontrib>Abdallah, Abdallah</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abu-Shams, Mohammad</au><au>Ramadan, Saleem</au><au>Al-Dahidi, Sameer</au><au>Abdallah, Abdallah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scheduling Large-Size Identical Parallel Machines with Single Server Using a Novel Heuristic-Guided Genetic Algorithm (DAS/GA) Approach</atitle><jtitle>Processes</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>10</volume><issue>10</issue><spage>2071</spage><pages>2071-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Parallel Machine Scheduling (PMS) is a well-known problem in modern manufacturing. It is an optimization problem aiming to schedule n jobs using m machines while fulfilling certain practical requirements, such as total tardiness. Traditional approaches, e.g., mix integer programming and Genetic Algorithm (GA), usually fail, particularly in large-size PMS problems, due to computational time and/or memory burden and the large searching space required, respectively. This work aims to overcome such challenges by proposing a heuristic-based GA (DAS/GA). Specifically, a large-scale PMS problem with n independent jobs and m identical machines with a single server is studied. Individual heuristic algorithms (DAS) and GA are used as benchmarks to verify the performance of the proposed combined DAS/GA on 18 benchmark problems established to cover small, medium, and large PMS problems concerning standard performance metrics from the literature and a new metric proposed in this work (standardized overall total tardiness). Computational experiments showed that the heuristic part (DAS-h) of the proposed algorithm significantly enhanced the performance of the GA for large-size problems. The results indicated that the proposed algorithm should only be used for large-scale PMS problems because DAS-h trapped GA in a region of local optima, limiting its capabilities in small- and mainly medium-sized problems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr10102071</doi><orcidid>https://orcid.org/0000-0002-7745-7784</orcidid><orcidid>https://orcid.org/0000-0001-6683-9878</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2022-10, Vol.10 (10), p.2071
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2728523761
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Benchmarks
Computer applications
Computing time
Employment
File servers
Genetic algorithms
Genetic research
Heuristic
Heuristic methods
Integer programming
Lateness
Optimization
Optimization techniques
Performance evaluation
Performance measurement
Problem solving
Scheduling
Servers
title Scheduling Large-Size Identical Parallel Machines with Single Server Using a Novel Heuristic-Guided Genetic Algorithm (DAS/GA) Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scheduling%20Large-Size%20Identical%20Parallel%20Machines%20with%20Single%20Server%20Using%20a%20Novel%20Heuristic-Guided%20Genetic%20Algorithm%20(DAS/GA)%20Approach&rft.jtitle=Processes&rft.au=Abu-Shams,%20Mohammad&rft.date=2022-10-01&rft.volume=10&rft.issue=10&rft.spage=2071&rft.pages=2071-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr10102071&rft_dat=%3Cgale_proqu%3EA744992984%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728523761&rft_id=info:pmid/&rft_galeid=A744992984&rfr_iscdi=true