On Comparison of Power of Partially Hypoelliptic Polynomials
The operators (polynomials) partially hypoelliptic by Gårding, Malgrange, and Ehrenpreis and partially hypoelliptic by Burenkov are compared. The conditions under which the addition of minor terms to a partially hypoelliptic operator of the given type does not violate the type of its partial hypoell...
Gespeichert in:
Veröffentlicht in: | Journal of contemporary mathematical analysis 2022-10, Vol.57 (5), p.289-295 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 295 |
---|---|
container_issue | 5 |
container_start_page | 289 |
container_title | Journal of contemporary mathematical analysis |
container_volume | 57 |
creator | Margaryan, V. N. Ghazaryan, H. G. |
description | The operators (polynomials) partially hypoelliptic by Gårding, Malgrange, and Ehrenpreis and partially hypoelliptic by Burenkov are compared. The conditions under which the addition of minor terms to a partially hypoelliptic operator of the given type does not violate the type of its partial hypoellipticity are established. |
doi_str_mv | 10.3103/S106836232205003X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2728493487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728493487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-fc6b51cf56f44b9c462665b5ec7b61181f4ad4814c8baf5e8e8b219608c5144d3</originalsourceid><addsrcrecordid>eNp1UF1LwzAUDaLgnP4A3wo-V3OTmzQFX2ToJgwmqOBbabNEOtqmJh3Sf29mBR_Ep3PgfFzuIeQS6DUHym-egUrFJeOMUUEpfzsiM8g5pjmCPI48yulBPyVnIewoFZHjjNxuumTh2r70dXBd4mzy5D6N_yalH-qyacZkNfbONE3dD7WOejN2ro1KOCcnNoK5-ME5eX24f1ms0vVm-bi4W6eaoRxSq2UlQFshLWKVa5RMSlEJo7NKAiiwWG5RAWpVlVYYZVTFIJdUaQGIWz4nV1Nv793H3oSh2Lm97-LJgmVMYfxTZdEFk0t7F4I3tuh93ZZ-LIAWh5GKPyPFDJsyIXq7d-N_m_8PfQG4hWgJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728493487</pqid></control><display><type>article</type><title>On Comparison of Power of Partially Hypoelliptic Polynomials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Margaryan, V. N. ; Ghazaryan, H. G.</creator><creatorcontrib>Margaryan, V. N. ; Ghazaryan, H. G.</creatorcontrib><description>The operators (polynomials) partially hypoelliptic by Gårding, Malgrange, and Ehrenpreis and partially hypoelliptic by Burenkov are compared. The conditions under which the addition of minor terms to a partially hypoelliptic operator of the given type does not violate the type of its partial hypoellipticity are established.</description><identifier>ISSN: 1068-3623</identifier><identifier>EISSN: 1934-9416</identifier><identifier>DOI: 10.3103/S106836232205003X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Polynomials</subject><ispartof>Journal of contemporary mathematical analysis, 2022-10, Vol.57 (5), p.289-295</ispartof><rights>Allerton Press, Inc. 2022</rights><rights>Allerton Press, Inc. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-fc6b51cf56f44b9c462665b5ec7b61181f4ad4814c8baf5e8e8b219608c5144d3</citedby><cites>FETCH-LOGICAL-c246t-fc6b51cf56f44b9c462665b5ec7b61181f4ad4814c8baf5e8e8b219608c5144d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S106836232205003X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S106836232205003X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Margaryan, V. N.</creatorcontrib><creatorcontrib>Ghazaryan, H. G.</creatorcontrib><title>On Comparison of Power of Partially Hypoelliptic Polynomials</title><title>Journal of contemporary mathematical analysis</title><addtitle>J. Contemp. Mathemat. Anal</addtitle><description>The operators (polynomials) partially hypoelliptic by Gårding, Malgrange, and Ehrenpreis and partially hypoelliptic by Burenkov are compared. The conditions under which the addition of minor terms to a partially hypoelliptic operator of the given type does not violate the type of its partial hypoellipticity are established.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><issn>1068-3623</issn><issn>1934-9416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UF1LwzAUDaLgnP4A3wo-V3OTmzQFX2ToJgwmqOBbabNEOtqmJh3Sf29mBR_Ep3PgfFzuIeQS6DUHym-egUrFJeOMUUEpfzsiM8g5pjmCPI48yulBPyVnIewoFZHjjNxuumTh2r70dXBd4mzy5D6N_yalH-qyacZkNfbONE3dD7WOejN2ro1KOCcnNoK5-ME5eX24f1ms0vVm-bi4W6eaoRxSq2UlQFshLWKVa5RMSlEJo7NKAiiwWG5RAWpVlVYYZVTFIJdUaQGIWz4nV1Nv793H3oSh2Lm97-LJgmVMYfxTZdEFk0t7F4I3tuh93ZZ-LIAWh5GKPyPFDJsyIXq7d-N_m_8PfQG4hWgJ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Margaryan, V. N.</creator><creator>Ghazaryan, H. G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221001</creationdate><title>On Comparison of Power of Partially Hypoelliptic Polynomials</title><author>Margaryan, V. N. ; Ghazaryan, H. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-fc6b51cf56f44b9c462665b5ec7b61181f4ad4814c8baf5e8e8b219608c5144d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Margaryan, V. N.</creatorcontrib><creatorcontrib>Ghazaryan, H. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of contemporary mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Margaryan, V. N.</au><au>Ghazaryan, H. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Comparison of Power of Partially Hypoelliptic Polynomials</atitle><jtitle>Journal of contemporary mathematical analysis</jtitle><stitle>J. Contemp. Mathemat. Anal</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>57</volume><issue>5</issue><spage>289</spage><epage>295</epage><pages>289-295</pages><issn>1068-3623</issn><eissn>1934-9416</eissn><abstract>The operators (polynomials) partially hypoelliptic by Gårding, Malgrange, and Ehrenpreis and partially hypoelliptic by Burenkov are compared. The conditions under which the addition of minor terms to a partially hypoelliptic operator of the given type does not violate the type of its partial hypoellipticity are established.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S106836232205003X</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1068-3623 |
ispartof | Journal of contemporary mathematical analysis, 2022-10, Vol.57 (5), p.289-295 |
issn | 1068-3623 1934-9416 |
language | eng |
recordid | cdi_proquest_journals_2728493487 |
source | SpringerLink Journals - AutoHoldings |
subjects | Mathematics Mathematics and Statistics Polynomials |
title | On Comparison of Power of Partially Hypoelliptic Polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Comparison%20of%20Power%20of%20Partially%20Hypoelliptic%20Polynomials&rft.jtitle=Journal%20of%20contemporary%20mathematical%20analysis&rft.au=Margaryan,%20V.%20N.&rft.date=2022-10-01&rft.volume=57&rft.issue=5&rft.spage=289&rft.epage=295&rft.pages=289-295&rft.issn=1068-3623&rft.eissn=1934-9416&rft_id=info:doi/10.3103/S106836232205003X&rft_dat=%3Cproquest_cross%3E2728493487%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728493487&rft_id=info:pmid/&rfr_iscdi=true |