Genetic variations in antioxidant content and chlorophyll fluorescence of chickpea (Cicer arietinum L.) genotypes exposed to freezing temperatures
Studying the diversity of plant physiological and biochemical responses to freezing stress is a prerequisite for the breeding process for greater low-temperature tolerance. The present study was conducted to evaluate the response of 11 chickpea genotypes to freezing temperatures (− 3, − 6, − 9, − 12...
Gespeichert in:
Veröffentlicht in: | Acta physiologiae plantarum 2022-12, Vol.44 (12), Article 138 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Acta physiologiae plantarum |
container_volume | 44 |
creator | Soureshjani, Hedayatollah Karimzadeh Nezami, Ahmad Nabati, Jafar Oskueian, Ehsan Ahmadi-Lahijani, Mohammad Javad |
description | Studying the diversity of plant physiological and biochemical responses to freezing stress is a prerequisite for the breeding process for greater low-temperature tolerance. The present study was conducted to evaluate the response of 11 chickpea genotypes to freezing temperatures (− 3, − 6, − 9, − 12, − 15, − 18, and − 21 °C). Leaf electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H
2
O
2
) content were increased when exposed to freezing temperatures. The more tolerant genotypes showed higher antioxidant content (ascorbate peroxidase, catalase, peroxidase, and superoxide dismutase), and proline content, and lower temperatures of 50% EL leakage (LT
50EL
) (− 8.2 °C), 50% dry matter reduction (RMDT
50
) (− 11.7 to − 12.7 °C), and lethal temperature of 50% of plants (LT
50Su
) (− 8.2 °C). In MCC797, FLIP86-05C, and MCC736,
F
v
'/F
m
'
and
F
q
'/F
m
'
(light
-
adapted maximum efficiency of PSII and PSII operating efficiency, respectively) decreased less compared with the other genotypes at a respective temperature and recovered faster during the recovery period. The results of principal components (PCA) and clustering analysis showed that the genotypes can be divided into three groups: (i) MCC505 (freezing-sensitive), (ii) MCC769, MCC775, MCC741, and FLIP98-121C (intermediate), and (iii) the other genotypes (freezing-tolerant). Among the tolerant genotypes, MCC797, FLIP86-05C, and MCC736 showed the highest freezing tolerance. The results revealed genetic variations among the genotypes in response to freezing stress, which could be beneficial for plant breeding programs to screen and introduce freezing-tolerant genotypes for fall cultivation, especially in cold regions. |
doi_str_mv | 10.1007/s11738-022-03476-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2728493465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728493465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3cf619c26f5c5673399e42ae86cb69ab00c345938fa46551e84fe21e4c87e4ca3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWH9ewFXAjS5G8zOTySylaBUKbnQdYnrTRqfJmGTE-hg-sdEK7tzcc-Ge8104CJ1QckEJaS8TpS2XFWGsIrxuRSV20IRKQSsqRL2LJoTytmqkpPvoIKVnQhreCDFBnzPwkJ3Bbzo6nV3wCTuPtS_ru1sUxSb4DEW1X2Cz6kMMw2rT99j2Y4iQDHgDONhyc-ZlAI3Pps5AxAVYyH5c4_nFOV6CD3kzQMLwPoQEC5wDthHgw_klzrAeIOo8FuAR2rO6T3D8q4fo8eb6YXpbze9nd9OreWVYS3LFjRW0M0zYxjSi5bzroGYapDBPotNPhBheNx2XVteiaSjI2gKjUBvZlqH5ITrdcocYXkdIWT2HMfryUrGWybrjJVdcbOsyMaQUwaohurWOG0WJ-u5ebbtXpXv1070SJcS3oVTMfgnxD_1P6gtA94po</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728493465</pqid></control><display><type>article</type><title>Genetic variations in antioxidant content and chlorophyll fluorescence of chickpea (Cicer arietinum L.) genotypes exposed to freezing temperatures</title><source>SpringerLink Journals - AutoHoldings</source><creator>Soureshjani, Hedayatollah Karimzadeh ; Nezami, Ahmad ; Nabati, Jafar ; Oskueian, Ehsan ; Ahmadi-Lahijani, Mohammad Javad</creator><creatorcontrib>Soureshjani, Hedayatollah Karimzadeh ; Nezami, Ahmad ; Nabati, Jafar ; Oskueian, Ehsan ; Ahmadi-Lahijani, Mohammad Javad</creatorcontrib><description>Studying the diversity of plant physiological and biochemical responses to freezing stress is a prerequisite for the breeding process for greater low-temperature tolerance. The present study was conducted to evaluate the response of 11 chickpea genotypes to freezing temperatures (− 3, − 6, − 9, − 12, − 15, − 18, and − 21 °C). Leaf electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H
2
O
2
) content were increased when exposed to freezing temperatures. The more tolerant genotypes showed higher antioxidant content (ascorbate peroxidase, catalase, peroxidase, and superoxide dismutase), and proline content, and lower temperatures of 50% EL leakage (LT
50EL
) (− 8.2 °C), 50% dry matter reduction (RMDT
50
) (− 11.7 to − 12.7 °C), and lethal temperature of 50% of plants (LT
50Su
) (− 8.2 °C). In MCC797, FLIP86-05C, and MCC736,
F
v
'/F
m
'
and
F
q
'/F
m
'
(light
-
adapted maximum efficiency of PSII and PSII operating efficiency, respectively) decreased less compared with the other genotypes at a respective temperature and recovered faster during the recovery period. The results of principal components (PCA) and clustering analysis showed that the genotypes can be divided into three groups: (i) MCC505 (freezing-sensitive), (ii) MCC769, MCC775, MCC741, and FLIP98-121C (intermediate), and (iii) the other genotypes (freezing-tolerant). Among the tolerant genotypes, MCC797, FLIP86-05C, and MCC736 showed the highest freezing tolerance. The results revealed genetic variations among the genotypes in response to freezing stress, which could be beneficial for plant breeding programs to screen and introduce freezing-tolerant genotypes for fall cultivation, especially in cold regions.</description><identifier>ISSN: 0137-5881</identifier><identifier>EISSN: 1861-1664</identifier><identifier>DOI: 10.1007/s11738-022-03476-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Antioxidants ; Ascorbic acid ; Biomedical and Life Sciences ; Catalase ; Chickpeas ; Chlorophyll ; Cluster analysis ; Clustering ; Cold regions ; Cold tolerance ; Dry matter ; Electrolyte leakage ; Fluorescence ; Freezing ; Genetic diversity ; Genotypes ; Hydrogen peroxide ; L-Ascorbate peroxidase ; Leakage ; Life Sciences ; Low temperature ; Original Article ; Peroxidase ; Photosystem II ; Plant Anatomy/Development ; Plant Biochemistry ; Plant breeding ; Plant diversity ; Plant Genetics and Genomics ; Plant Pathology ; Plant Physiology ; Principal components analysis ; Superoxide dismutase ; Temperature ; Temperature tolerance</subject><ispartof>Acta physiologiae plantarum, 2022-12, Vol.44 (12), Article 138</ispartof><rights>The Author(s) under exclusive licence to Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3cf619c26f5c5673399e42ae86cb69ab00c345938fa46551e84fe21e4c87e4ca3</cites><orcidid>0000-0001-9490-6935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11738-022-03476-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11738-022-03476-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Soureshjani, Hedayatollah Karimzadeh</creatorcontrib><creatorcontrib>Nezami, Ahmad</creatorcontrib><creatorcontrib>Nabati, Jafar</creatorcontrib><creatorcontrib>Oskueian, Ehsan</creatorcontrib><creatorcontrib>Ahmadi-Lahijani, Mohammad Javad</creatorcontrib><title>Genetic variations in antioxidant content and chlorophyll fluorescence of chickpea (Cicer arietinum L.) genotypes exposed to freezing temperatures</title><title>Acta physiologiae plantarum</title><addtitle>Acta Physiol Plant</addtitle><description>Studying the diversity of plant physiological and biochemical responses to freezing stress is a prerequisite for the breeding process for greater low-temperature tolerance. The present study was conducted to evaluate the response of 11 chickpea genotypes to freezing temperatures (− 3, − 6, − 9, − 12, − 15, − 18, and − 21 °C). Leaf electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H
2
O
2
) content were increased when exposed to freezing temperatures. The more tolerant genotypes showed higher antioxidant content (ascorbate peroxidase, catalase, peroxidase, and superoxide dismutase), and proline content, and lower temperatures of 50% EL leakage (LT
50EL
) (− 8.2 °C), 50% dry matter reduction (RMDT
50
) (− 11.7 to − 12.7 °C), and lethal temperature of 50% of plants (LT
50Su
) (− 8.2 °C). In MCC797, FLIP86-05C, and MCC736,
F
v
'/F
m
'
and
F
q
'/F
m
'
(light
-
adapted maximum efficiency of PSII and PSII operating efficiency, respectively) decreased less compared with the other genotypes at a respective temperature and recovered faster during the recovery period. The results of principal components (PCA) and clustering analysis showed that the genotypes can be divided into three groups: (i) MCC505 (freezing-sensitive), (ii) MCC769, MCC775, MCC741, and FLIP98-121C (intermediate), and (iii) the other genotypes (freezing-tolerant). Among the tolerant genotypes, MCC797, FLIP86-05C, and MCC736 showed the highest freezing tolerance. The results revealed genetic variations among the genotypes in response to freezing stress, which could be beneficial for plant breeding programs to screen and introduce freezing-tolerant genotypes for fall cultivation, especially in cold regions.</description><subject>Agriculture</subject><subject>Antioxidants</subject><subject>Ascorbic acid</subject><subject>Biomedical and Life Sciences</subject><subject>Catalase</subject><subject>Chickpeas</subject><subject>Chlorophyll</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Cold regions</subject><subject>Cold tolerance</subject><subject>Dry matter</subject><subject>Electrolyte leakage</subject><subject>Fluorescence</subject><subject>Freezing</subject><subject>Genetic diversity</subject><subject>Genotypes</subject><subject>Hydrogen peroxide</subject><subject>L-Ascorbate peroxidase</subject><subject>Leakage</subject><subject>Life Sciences</subject><subject>Low temperature</subject><subject>Original Article</subject><subject>Peroxidase</subject><subject>Photosystem II</subject><subject>Plant Anatomy/Development</subject><subject>Plant Biochemistry</subject><subject>Plant breeding</subject><subject>Plant diversity</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Principal components analysis</subject><subject>Superoxide dismutase</subject><subject>Temperature</subject><subject>Temperature tolerance</subject><issn>0137-5881</issn><issn>1861-1664</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWH9ewFXAjS5G8zOTySylaBUKbnQdYnrTRqfJmGTE-hg-sdEK7tzcc-Ge8104CJ1QckEJaS8TpS2XFWGsIrxuRSV20IRKQSsqRL2LJoTytmqkpPvoIKVnQhreCDFBnzPwkJ3Bbzo6nV3wCTuPtS_ru1sUxSb4DEW1X2Cz6kMMw2rT99j2Y4iQDHgDONhyc-ZlAI3Pps5AxAVYyH5c4_nFOV6CD3kzQMLwPoQEC5wDthHgw_klzrAeIOo8FuAR2rO6T3D8q4fo8eb6YXpbze9nd9OreWVYS3LFjRW0M0zYxjSi5bzroGYapDBPotNPhBheNx2XVteiaSjI2gKjUBvZlqH5ITrdcocYXkdIWT2HMfryUrGWybrjJVdcbOsyMaQUwaohurWOG0WJ-u5ebbtXpXv1070SJcS3oVTMfgnxD_1P6gtA94po</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Soureshjani, Hedayatollah Karimzadeh</creator><creator>Nezami, Ahmad</creator><creator>Nabati, Jafar</creator><creator>Oskueian, Ehsan</creator><creator>Ahmadi-Lahijani, Mohammad Javad</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9490-6935</orcidid></search><sort><creationdate>20221201</creationdate><title>Genetic variations in antioxidant content and chlorophyll fluorescence of chickpea (Cicer arietinum L.) genotypes exposed to freezing temperatures</title><author>Soureshjani, Hedayatollah Karimzadeh ; Nezami, Ahmad ; Nabati, Jafar ; Oskueian, Ehsan ; Ahmadi-Lahijani, Mohammad Javad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3cf619c26f5c5673399e42ae86cb69ab00c345938fa46551e84fe21e4c87e4ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Antioxidants</topic><topic>Ascorbic acid</topic><topic>Biomedical and Life Sciences</topic><topic>Catalase</topic><topic>Chickpeas</topic><topic>Chlorophyll</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Cold regions</topic><topic>Cold tolerance</topic><topic>Dry matter</topic><topic>Electrolyte leakage</topic><topic>Fluorescence</topic><topic>Freezing</topic><topic>Genetic diversity</topic><topic>Genotypes</topic><topic>Hydrogen peroxide</topic><topic>L-Ascorbate peroxidase</topic><topic>Leakage</topic><topic>Life Sciences</topic><topic>Low temperature</topic><topic>Original Article</topic><topic>Peroxidase</topic><topic>Photosystem II</topic><topic>Plant Anatomy/Development</topic><topic>Plant Biochemistry</topic><topic>Plant breeding</topic><topic>Plant diversity</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Principal components analysis</topic><topic>Superoxide dismutase</topic><topic>Temperature</topic><topic>Temperature tolerance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soureshjani, Hedayatollah Karimzadeh</creatorcontrib><creatorcontrib>Nezami, Ahmad</creatorcontrib><creatorcontrib>Nabati, Jafar</creatorcontrib><creatorcontrib>Oskueian, Ehsan</creatorcontrib><creatorcontrib>Ahmadi-Lahijani, Mohammad Javad</creatorcontrib><collection>CrossRef</collection><jtitle>Acta physiologiae plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soureshjani, Hedayatollah Karimzadeh</au><au>Nezami, Ahmad</au><au>Nabati, Jafar</au><au>Oskueian, Ehsan</au><au>Ahmadi-Lahijani, Mohammad Javad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic variations in antioxidant content and chlorophyll fluorescence of chickpea (Cicer arietinum L.) genotypes exposed to freezing temperatures</atitle><jtitle>Acta physiologiae plantarum</jtitle><stitle>Acta Physiol Plant</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>44</volume><issue>12</issue><artnum>138</artnum><issn>0137-5881</issn><eissn>1861-1664</eissn><abstract>Studying the diversity of plant physiological and biochemical responses to freezing stress is a prerequisite for the breeding process for greater low-temperature tolerance. The present study was conducted to evaluate the response of 11 chickpea genotypes to freezing temperatures (− 3, − 6, − 9, − 12, − 15, − 18, and − 21 °C). Leaf electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H
2
O
2
) content were increased when exposed to freezing temperatures. The more tolerant genotypes showed higher antioxidant content (ascorbate peroxidase, catalase, peroxidase, and superoxide dismutase), and proline content, and lower temperatures of 50% EL leakage (LT
50EL
) (− 8.2 °C), 50% dry matter reduction (RMDT
50
) (− 11.7 to − 12.7 °C), and lethal temperature of 50% of plants (LT
50Su
) (− 8.2 °C). In MCC797, FLIP86-05C, and MCC736,
F
v
'/F
m
'
and
F
q
'/F
m
'
(light
-
adapted maximum efficiency of PSII and PSII operating efficiency, respectively) decreased less compared with the other genotypes at a respective temperature and recovered faster during the recovery period. The results of principal components (PCA) and clustering analysis showed that the genotypes can be divided into three groups: (i) MCC505 (freezing-sensitive), (ii) MCC769, MCC775, MCC741, and FLIP98-121C (intermediate), and (iii) the other genotypes (freezing-tolerant). Among the tolerant genotypes, MCC797, FLIP86-05C, and MCC736 showed the highest freezing tolerance. The results revealed genetic variations among the genotypes in response to freezing stress, which could be beneficial for plant breeding programs to screen and introduce freezing-tolerant genotypes for fall cultivation, especially in cold regions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11738-022-03476-6</doi><orcidid>https://orcid.org/0000-0001-9490-6935</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0137-5881 |
ispartof | Acta physiologiae plantarum, 2022-12, Vol.44 (12), Article 138 |
issn | 0137-5881 1861-1664 |
language | eng |
recordid | cdi_proquest_journals_2728493465 |
source | SpringerLink Journals - AutoHoldings |
subjects | Agriculture Antioxidants Ascorbic acid Biomedical and Life Sciences Catalase Chickpeas Chlorophyll Cluster analysis Clustering Cold regions Cold tolerance Dry matter Electrolyte leakage Fluorescence Freezing Genetic diversity Genotypes Hydrogen peroxide L-Ascorbate peroxidase Leakage Life Sciences Low temperature Original Article Peroxidase Photosystem II Plant Anatomy/Development Plant Biochemistry Plant breeding Plant diversity Plant Genetics and Genomics Plant Pathology Plant Physiology Principal components analysis Superoxide dismutase Temperature Temperature tolerance |
title | Genetic variations in antioxidant content and chlorophyll fluorescence of chickpea (Cicer arietinum L.) genotypes exposed to freezing temperatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T21%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20variations%20in%20antioxidant%20content%20and%20chlorophyll%20fluorescence%20of%20chickpea%20(Cicer%20arietinum%20L.)%20genotypes%20exposed%20to%20freezing%20temperatures&rft.jtitle=Acta%20physiologiae%20plantarum&rft.au=Soureshjani,%20Hedayatollah%20Karimzadeh&rft.date=2022-12-01&rft.volume=44&rft.issue=12&rft.artnum=138&rft.issn=0137-5881&rft.eissn=1861-1664&rft_id=info:doi/10.1007/s11738-022-03476-6&rft_dat=%3Cproquest_cross%3E2728493465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728493465&rft_id=info:pmid/&rfr_iscdi=true |