Genetic variations in antioxidant content and chlorophyll fluorescence of chickpea (Cicer arietinum L.) genotypes exposed to freezing temperatures

Studying the diversity of plant physiological and biochemical responses to freezing stress is a prerequisite for the breeding process for greater low-temperature tolerance. The present study was conducted to evaluate the response of 11 chickpea genotypes to freezing temperatures (− 3, − 6, − 9, − 12...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta physiologiae plantarum 2022-12, Vol.44 (12), Article 138
Hauptverfasser: Soureshjani, Hedayatollah Karimzadeh, Nezami, Ahmad, Nabati, Jafar, Oskueian, Ehsan, Ahmadi-Lahijani, Mohammad Javad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Acta physiologiae plantarum
container_volume 44
creator Soureshjani, Hedayatollah Karimzadeh
Nezami, Ahmad
Nabati, Jafar
Oskueian, Ehsan
Ahmadi-Lahijani, Mohammad Javad
description Studying the diversity of plant physiological and biochemical responses to freezing stress is a prerequisite for the breeding process for greater low-temperature tolerance. The present study was conducted to evaluate the response of 11 chickpea genotypes to freezing temperatures (− 3, − 6, − 9, − 12, − 15, − 18, and − 21 °C). Leaf electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H 2 O 2 ) content were increased when exposed to freezing temperatures. The more tolerant genotypes showed higher antioxidant content (ascorbate peroxidase, catalase, peroxidase, and superoxide dismutase), and proline content, and lower temperatures of 50% EL leakage (LT 50EL ) (− 8.2 °C), 50% dry matter reduction (RMDT 50 ) (− 11.7 to − 12.7 °C), and lethal temperature of 50% of plants (LT 50Su ) (− 8.2 °C). In MCC797, FLIP86-05C, and MCC736, F v '/F m ' and F q '/F m ' (light - adapted maximum efficiency of PSII and PSII operating efficiency, respectively) decreased less compared with the other genotypes at a respective temperature and recovered faster during the recovery period. The results of principal components (PCA) and clustering analysis showed that the genotypes can be divided into three groups: (i) MCC505 (freezing-sensitive), (ii) MCC769, MCC775, MCC741, and FLIP98-121C (intermediate), and (iii) the other genotypes (freezing-tolerant). Among the tolerant genotypes, MCC797, FLIP86-05C, and MCC736 showed the highest freezing tolerance. The results revealed genetic variations among the genotypes in response to freezing stress, which could be beneficial for plant breeding programs to screen and introduce freezing-tolerant genotypes for fall cultivation, especially in cold regions.
doi_str_mv 10.1007/s11738-022-03476-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2728493465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728493465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3cf619c26f5c5673399e42ae86cb69ab00c345938fa46551e84fe21e4c87e4ca3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWH9ewFXAjS5G8zOTySylaBUKbnQdYnrTRqfJmGTE-hg-sdEK7tzcc-Ge8104CJ1QckEJaS8TpS2XFWGsIrxuRSV20IRKQSsqRL2LJoTytmqkpPvoIKVnQhreCDFBnzPwkJ3Bbzo6nV3wCTuPtS_ru1sUxSb4DEW1X2Cz6kMMw2rT99j2Y4iQDHgDONhyc-ZlAI3Pps5AxAVYyH5c4_nFOV6CD3kzQMLwPoQEC5wDthHgw_klzrAeIOo8FuAR2rO6T3D8q4fo8eb6YXpbze9nd9OreWVYS3LFjRW0M0zYxjSi5bzroGYapDBPotNPhBheNx2XVteiaSjI2gKjUBvZlqH5ITrdcocYXkdIWT2HMfryUrGWybrjJVdcbOsyMaQUwaohurWOG0WJ-u5ebbtXpXv1070SJcS3oVTMfgnxD_1P6gtA94po</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728493465</pqid></control><display><type>article</type><title>Genetic variations in antioxidant content and chlorophyll fluorescence of chickpea (Cicer arietinum L.) genotypes exposed to freezing temperatures</title><source>SpringerLink Journals - AutoHoldings</source><creator>Soureshjani, Hedayatollah Karimzadeh ; Nezami, Ahmad ; Nabati, Jafar ; Oskueian, Ehsan ; Ahmadi-Lahijani, Mohammad Javad</creator><creatorcontrib>Soureshjani, Hedayatollah Karimzadeh ; Nezami, Ahmad ; Nabati, Jafar ; Oskueian, Ehsan ; Ahmadi-Lahijani, Mohammad Javad</creatorcontrib><description>Studying the diversity of plant physiological and biochemical responses to freezing stress is a prerequisite for the breeding process for greater low-temperature tolerance. The present study was conducted to evaluate the response of 11 chickpea genotypes to freezing temperatures (− 3, − 6, − 9, − 12, − 15, − 18, and − 21 °C). Leaf electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H 2 O 2 ) content were increased when exposed to freezing temperatures. The more tolerant genotypes showed higher antioxidant content (ascorbate peroxidase, catalase, peroxidase, and superoxide dismutase), and proline content, and lower temperatures of 50% EL leakage (LT 50EL ) (− 8.2 °C), 50% dry matter reduction (RMDT 50 ) (− 11.7 to − 12.7 °C), and lethal temperature of 50% of plants (LT 50Su ) (− 8.2 °C). In MCC797, FLIP86-05C, and MCC736, F v '/F m ' and F q '/F m ' (light - adapted maximum efficiency of PSII and PSII operating efficiency, respectively) decreased less compared with the other genotypes at a respective temperature and recovered faster during the recovery period. The results of principal components (PCA) and clustering analysis showed that the genotypes can be divided into three groups: (i) MCC505 (freezing-sensitive), (ii) MCC769, MCC775, MCC741, and FLIP98-121C (intermediate), and (iii) the other genotypes (freezing-tolerant). Among the tolerant genotypes, MCC797, FLIP86-05C, and MCC736 showed the highest freezing tolerance. The results revealed genetic variations among the genotypes in response to freezing stress, which could be beneficial for plant breeding programs to screen and introduce freezing-tolerant genotypes for fall cultivation, especially in cold regions.</description><identifier>ISSN: 0137-5881</identifier><identifier>EISSN: 1861-1664</identifier><identifier>DOI: 10.1007/s11738-022-03476-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Antioxidants ; Ascorbic acid ; Biomedical and Life Sciences ; Catalase ; Chickpeas ; Chlorophyll ; Cluster analysis ; Clustering ; Cold regions ; Cold tolerance ; Dry matter ; Electrolyte leakage ; Fluorescence ; Freezing ; Genetic diversity ; Genotypes ; Hydrogen peroxide ; L-Ascorbate peroxidase ; Leakage ; Life Sciences ; Low temperature ; Original Article ; Peroxidase ; Photosystem II ; Plant Anatomy/Development ; Plant Biochemistry ; Plant breeding ; Plant diversity ; Plant Genetics and Genomics ; Plant Pathology ; Plant Physiology ; Principal components analysis ; Superoxide dismutase ; Temperature ; Temperature tolerance</subject><ispartof>Acta physiologiae plantarum, 2022-12, Vol.44 (12), Article 138</ispartof><rights>The Author(s) under exclusive licence to Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3cf619c26f5c5673399e42ae86cb69ab00c345938fa46551e84fe21e4c87e4ca3</cites><orcidid>0000-0001-9490-6935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11738-022-03476-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11738-022-03476-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Soureshjani, Hedayatollah Karimzadeh</creatorcontrib><creatorcontrib>Nezami, Ahmad</creatorcontrib><creatorcontrib>Nabati, Jafar</creatorcontrib><creatorcontrib>Oskueian, Ehsan</creatorcontrib><creatorcontrib>Ahmadi-Lahijani, Mohammad Javad</creatorcontrib><title>Genetic variations in antioxidant content and chlorophyll fluorescence of chickpea (Cicer arietinum L.) genotypes exposed to freezing temperatures</title><title>Acta physiologiae plantarum</title><addtitle>Acta Physiol Plant</addtitle><description>Studying the diversity of plant physiological and biochemical responses to freezing stress is a prerequisite for the breeding process for greater low-temperature tolerance. The present study was conducted to evaluate the response of 11 chickpea genotypes to freezing temperatures (− 3, − 6, − 9, − 12, − 15, − 18, and − 21 °C). Leaf electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H 2 O 2 ) content were increased when exposed to freezing temperatures. The more tolerant genotypes showed higher antioxidant content (ascorbate peroxidase, catalase, peroxidase, and superoxide dismutase), and proline content, and lower temperatures of 50% EL leakage (LT 50EL ) (− 8.2 °C), 50% dry matter reduction (RMDT 50 ) (− 11.7 to − 12.7 °C), and lethal temperature of 50% of plants (LT 50Su ) (− 8.2 °C). In MCC797, FLIP86-05C, and MCC736, F v '/F m ' and F q '/F m ' (light - adapted maximum efficiency of PSII and PSII operating efficiency, respectively) decreased less compared with the other genotypes at a respective temperature and recovered faster during the recovery period. The results of principal components (PCA) and clustering analysis showed that the genotypes can be divided into three groups: (i) MCC505 (freezing-sensitive), (ii) MCC769, MCC775, MCC741, and FLIP98-121C (intermediate), and (iii) the other genotypes (freezing-tolerant). Among the tolerant genotypes, MCC797, FLIP86-05C, and MCC736 showed the highest freezing tolerance. The results revealed genetic variations among the genotypes in response to freezing stress, which could be beneficial for plant breeding programs to screen and introduce freezing-tolerant genotypes for fall cultivation, especially in cold regions.</description><subject>Agriculture</subject><subject>Antioxidants</subject><subject>Ascorbic acid</subject><subject>Biomedical and Life Sciences</subject><subject>Catalase</subject><subject>Chickpeas</subject><subject>Chlorophyll</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Cold regions</subject><subject>Cold tolerance</subject><subject>Dry matter</subject><subject>Electrolyte leakage</subject><subject>Fluorescence</subject><subject>Freezing</subject><subject>Genetic diversity</subject><subject>Genotypes</subject><subject>Hydrogen peroxide</subject><subject>L-Ascorbate peroxidase</subject><subject>Leakage</subject><subject>Life Sciences</subject><subject>Low temperature</subject><subject>Original Article</subject><subject>Peroxidase</subject><subject>Photosystem II</subject><subject>Plant Anatomy/Development</subject><subject>Plant Biochemistry</subject><subject>Plant breeding</subject><subject>Plant diversity</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Principal components analysis</subject><subject>Superoxide dismutase</subject><subject>Temperature</subject><subject>Temperature tolerance</subject><issn>0137-5881</issn><issn>1861-1664</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWH9ewFXAjS5G8zOTySylaBUKbnQdYnrTRqfJmGTE-hg-sdEK7tzcc-Ge8104CJ1QckEJaS8TpS2XFWGsIrxuRSV20IRKQSsqRL2LJoTytmqkpPvoIKVnQhreCDFBnzPwkJ3Bbzo6nV3wCTuPtS_ru1sUxSb4DEW1X2Cz6kMMw2rT99j2Y4iQDHgDONhyc-ZlAI3Pps5AxAVYyH5c4_nFOV6CD3kzQMLwPoQEC5wDthHgw_klzrAeIOo8FuAR2rO6T3D8q4fo8eb6YXpbze9nd9OreWVYS3LFjRW0M0zYxjSi5bzroGYapDBPotNPhBheNx2XVteiaSjI2gKjUBvZlqH5ITrdcocYXkdIWT2HMfryUrGWybrjJVdcbOsyMaQUwaohurWOG0WJ-u5ebbtXpXv1070SJcS3oVTMfgnxD_1P6gtA94po</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Soureshjani, Hedayatollah Karimzadeh</creator><creator>Nezami, Ahmad</creator><creator>Nabati, Jafar</creator><creator>Oskueian, Ehsan</creator><creator>Ahmadi-Lahijani, Mohammad Javad</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9490-6935</orcidid></search><sort><creationdate>20221201</creationdate><title>Genetic variations in antioxidant content and chlorophyll fluorescence of chickpea (Cicer arietinum L.) genotypes exposed to freezing temperatures</title><author>Soureshjani, Hedayatollah Karimzadeh ; Nezami, Ahmad ; Nabati, Jafar ; Oskueian, Ehsan ; Ahmadi-Lahijani, Mohammad Javad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3cf619c26f5c5673399e42ae86cb69ab00c345938fa46551e84fe21e4c87e4ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Antioxidants</topic><topic>Ascorbic acid</topic><topic>Biomedical and Life Sciences</topic><topic>Catalase</topic><topic>Chickpeas</topic><topic>Chlorophyll</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Cold regions</topic><topic>Cold tolerance</topic><topic>Dry matter</topic><topic>Electrolyte leakage</topic><topic>Fluorescence</topic><topic>Freezing</topic><topic>Genetic diversity</topic><topic>Genotypes</topic><topic>Hydrogen peroxide</topic><topic>L-Ascorbate peroxidase</topic><topic>Leakage</topic><topic>Life Sciences</topic><topic>Low temperature</topic><topic>Original Article</topic><topic>Peroxidase</topic><topic>Photosystem II</topic><topic>Plant Anatomy/Development</topic><topic>Plant Biochemistry</topic><topic>Plant breeding</topic><topic>Plant diversity</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Principal components analysis</topic><topic>Superoxide dismutase</topic><topic>Temperature</topic><topic>Temperature tolerance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soureshjani, Hedayatollah Karimzadeh</creatorcontrib><creatorcontrib>Nezami, Ahmad</creatorcontrib><creatorcontrib>Nabati, Jafar</creatorcontrib><creatorcontrib>Oskueian, Ehsan</creatorcontrib><creatorcontrib>Ahmadi-Lahijani, Mohammad Javad</creatorcontrib><collection>CrossRef</collection><jtitle>Acta physiologiae plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soureshjani, Hedayatollah Karimzadeh</au><au>Nezami, Ahmad</au><au>Nabati, Jafar</au><au>Oskueian, Ehsan</au><au>Ahmadi-Lahijani, Mohammad Javad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic variations in antioxidant content and chlorophyll fluorescence of chickpea (Cicer arietinum L.) genotypes exposed to freezing temperatures</atitle><jtitle>Acta physiologiae plantarum</jtitle><stitle>Acta Physiol Plant</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>44</volume><issue>12</issue><artnum>138</artnum><issn>0137-5881</issn><eissn>1861-1664</eissn><abstract>Studying the diversity of plant physiological and biochemical responses to freezing stress is a prerequisite for the breeding process for greater low-temperature tolerance. The present study was conducted to evaluate the response of 11 chickpea genotypes to freezing temperatures (− 3, − 6, − 9, − 12, − 15, − 18, and − 21 °C). Leaf electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H 2 O 2 ) content were increased when exposed to freezing temperatures. The more tolerant genotypes showed higher antioxidant content (ascorbate peroxidase, catalase, peroxidase, and superoxide dismutase), and proline content, and lower temperatures of 50% EL leakage (LT 50EL ) (− 8.2 °C), 50% dry matter reduction (RMDT 50 ) (− 11.7 to − 12.7 °C), and lethal temperature of 50% of plants (LT 50Su ) (− 8.2 °C). In MCC797, FLIP86-05C, and MCC736, F v '/F m ' and F q '/F m ' (light - adapted maximum efficiency of PSII and PSII operating efficiency, respectively) decreased less compared with the other genotypes at a respective temperature and recovered faster during the recovery period. The results of principal components (PCA) and clustering analysis showed that the genotypes can be divided into three groups: (i) MCC505 (freezing-sensitive), (ii) MCC769, MCC775, MCC741, and FLIP98-121C (intermediate), and (iii) the other genotypes (freezing-tolerant). Among the tolerant genotypes, MCC797, FLIP86-05C, and MCC736 showed the highest freezing tolerance. The results revealed genetic variations among the genotypes in response to freezing stress, which could be beneficial for plant breeding programs to screen and introduce freezing-tolerant genotypes for fall cultivation, especially in cold regions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11738-022-03476-6</doi><orcidid>https://orcid.org/0000-0001-9490-6935</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0137-5881
ispartof Acta physiologiae plantarum, 2022-12, Vol.44 (12), Article 138
issn 0137-5881
1861-1664
language eng
recordid cdi_proquest_journals_2728493465
source SpringerLink Journals - AutoHoldings
subjects Agriculture
Antioxidants
Ascorbic acid
Biomedical and Life Sciences
Catalase
Chickpeas
Chlorophyll
Cluster analysis
Clustering
Cold regions
Cold tolerance
Dry matter
Electrolyte leakage
Fluorescence
Freezing
Genetic diversity
Genotypes
Hydrogen peroxide
L-Ascorbate peroxidase
Leakage
Life Sciences
Low temperature
Original Article
Peroxidase
Photosystem II
Plant Anatomy/Development
Plant Biochemistry
Plant breeding
Plant diversity
Plant Genetics and Genomics
Plant Pathology
Plant Physiology
Principal components analysis
Superoxide dismutase
Temperature
Temperature tolerance
title Genetic variations in antioxidant content and chlorophyll fluorescence of chickpea (Cicer arietinum L.) genotypes exposed to freezing temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T21%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20variations%20in%20antioxidant%20content%20and%20chlorophyll%20fluorescence%20of%20chickpea%20(Cicer%20arietinum%20L.)%20genotypes%20exposed%20to%20freezing%20temperatures&rft.jtitle=Acta%20physiologiae%20plantarum&rft.au=Soureshjani,%20Hedayatollah%20Karimzadeh&rft.date=2022-12-01&rft.volume=44&rft.issue=12&rft.artnum=138&rft.issn=0137-5881&rft.eissn=1861-1664&rft_id=info:doi/10.1007/s11738-022-03476-6&rft_dat=%3Cproquest_cross%3E2728493465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728493465&rft_id=info:pmid/&rfr_iscdi=true