Evidential strategies in financial statement analysis: a corpus linguistic text mining approach to bankruptcy prediction
The qualitative information of companies’ financial statements provides useful information that can increase the accuracy of bankruptcy prediction models. In this research, a dataset of 924,903 financial statements from 355,704 German companies classified into solvent, financially distressed, and ba...
Gespeichert in:
Veröffentlicht in: | Journal of risk and financial management 2022-10, Vol.15 (10), p.1-15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | Journal of risk and financial management |
container_volume | 15 |
creator | Nießner, Tobias Gross, Daniel H Schumann, Matthias |
description | The qualitative information of companies’ financial statements provides useful information that can increase the accuracy of bankruptcy prediction models. In this research, a dataset of 924,903 financial statements from 355,704 German companies classified into solvent, financially distressed, and bankrupt companies using the Amadeus database from Bureau van Dijk was examined. The results provide empirical evidence that a corpus linguistic approach implementing evidential strategy analysis towards financial statements helps to distinguish between companies’ financial situations. They show that companies use different approaches and confidence assessments when evaluating their financial statements based on solvency and vary their use of evidential strategies accordingly. This leads to the proposition of a procedure to quantify and generate features based on the analysis of evidential strategies that can be used to improve corporate bankruptcy prediction. The results presented here stem from an interdisciplinary adaptation of linguistic findings and provide future research with another means of analysis in the area of text mining. |
doi_str_mv | 10.3390/jrfm15100459 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2728484416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728484416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-516be1a16dfe06cb9a1daf1a770d087e9a0673b6bc07270856ace9caec79df813</originalsourceid><addsrcrecordid>eNpN0E1Lw0AQBuBFFCy1N39AwKvRmWyyH0cp1QoFL3oOk82ubGg2dTcV-u-NRLCnGYZnhuFl7BbhgXMNj110PVYIUFb6gi1QI-YKZHl51l-zVUodACBMO1wtWLX59q0No6d9lsZIo_30NmU-ZM4HCmaeT-N-QhkF2p-STzfsytE-2dVfXbKP5837epvv3l5e10-73PBCjHmForFIKFpnQZhGE7bkkKSEFpS0mkBI3ojGgCwkqEqQsdqQNVK3TiFfsrv57iEOX0ebxrobjnF6ItWFLFSpyhLFpO5nZeKQUrSuPkTfUzzVCPVvNvV5NhPPZm7NEHz6x4oDSJBc8R-0dGGI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728484416</pqid></control><display><type>article</type><title>Evidential strategies in financial statement analysis: a corpus linguistic text mining approach to bankruptcy prediction</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nießner, Tobias ; Gross, Daniel H ; Schumann, Matthias</creator><creatorcontrib>Nießner, Tobias ; Gross, Daniel H ; Schumann, Matthias</creatorcontrib><description>The qualitative information of companies’ financial statements provides useful information that can increase the accuracy of bankruptcy prediction models. In this research, a dataset of 924,903 financial statements from 355,704 German companies classified into solvent, financially distressed, and bankrupt companies using the Amadeus database from Bureau van Dijk was examined. The results provide empirical evidence that a corpus linguistic approach implementing evidential strategy analysis towards financial statements helps to distinguish between companies’ financial situations. They show that companies use different approaches and confidence assessments when evaluating their financial statements based on solvency and vary their use of evidential strategies accordingly. This leads to the proposition of a procedure to quantify and generate features based on the analysis of evidential strategies that can be used to improve corporate bankruptcy prediction. The results presented here stem from an interdisciplinary adaptation of linguistic findings and provide future research with another means of analysis in the area of text mining.</description><identifier>ISSN: 1911-8074</identifier><identifier>ISSN: 1911-8066</identifier><identifier>EISSN: 1911-8074</identifier><identifier>DOI: 10.3390/jrfm15100459</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bankruptcy ; Data mining ; Financial statement analysis ; German language ; Information sources ; Insolvency ; Linguistics ; Semantics</subject><ispartof>Journal of risk and financial management, 2022-10, Vol.15 (10), p.1-15</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-516be1a16dfe06cb9a1daf1a770d087e9a0673b6bc07270856ace9caec79df813</citedby><cites>FETCH-LOGICAL-c326t-516be1a16dfe06cb9a1daf1a770d087e9a0673b6bc07270856ace9caec79df813</cites><orcidid>0000-0001-9333-7013 ; 0000-0001-7577-448X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Nießner, Tobias</creatorcontrib><creatorcontrib>Gross, Daniel H</creatorcontrib><creatorcontrib>Schumann, Matthias</creatorcontrib><title>Evidential strategies in financial statement analysis: a corpus linguistic text mining approach to bankruptcy prediction</title><title>Journal of risk and financial management</title><description>The qualitative information of companies’ financial statements provides useful information that can increase the accuracy of bankruptcy prediction models. In this research, a dataset of 924,903 financial statements from 355,704 German companies classified into solvent, financially distressed, and bankrupt companies using the Amadeus database from Bureau van Dijk was examined. The results provide empirical evidence that a corpus linguistic approach implementing evidential strategy analysis towards financial statements helps to distinguish between companies’ financial situations. They show that companies use different approaches and confidence assessments when evaluating their financial statements based on solvency and vary their use of evidential strategies accordingly. This leads to the proposition of a procedure to quantify and generate features based on the analysis of evidential strategies that can be used to improve corporate bankruptcy prediction. The results presented here stem from an interdisciplinary adaptation of linguistic findings and provide future research with another means of analysis in the area of text mining.</description><subject>Bankruptcy</subject><subject>Data mining</subject><subject>Financial statement analysis</subject><subject>German language</subject><subject>Information sources</subject><subject>Insolvency</subject><subject>Linguistics</subject><subject>Semantics</subject><issn>1911-8074</issn><issn>1911-8066</issn><issn>1911-8074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpN0E1Lw0AQBuBFFCy1N39AwKvRmWyyH0cp1QoFL3oOk82ubGg2dTcV-u-NRLCnGYZnhuFl7BbhgXMNj110PVYIUFb6gi1QI-YKZHl51l-zVUodACBMO1wtWLX59q0No6d9lsZIo_30NmU-ZM4HCmaeT-N-QhkF2p-STzfsytE-2dVfXbKP5837epvv3l5e10-73PBCjHmForFIKFpnQZhGE7bkkKSEFpS0mkBI3ojGgCwkqEqQsdqQNVK3TiFfsrv57iEOX0ebxrobjnF6ItWFLFSpyhLFpO5nZeKQUrSuPkTfUzzVCPVvNvV5NhPPZm7NEHz6x4oDSJBc8R-0dGGI</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Nießner, Tobias</creator><creator>Gross, Daniel H</creator><creator>Schumann, Matthias</creator><general>MDPI AG</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9333-7013</orcidid><orcidid>https://orcid.org/0000-0001-7577-448X</orcidid></search><sort><creationdate>20221001</creationdate><title>Evidential strategies in financial statement analysis</title><author>Nießner, Tobias ; Gross, Daniel H ; Schumann, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-516be1a16dfe06cb9a1daf1a770d087e9a0673b6bc07270856ace9caec79df813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bankruptcy</topic><topic>Data mining</topic><topic>Financial statement analysis</topic><topic>German language</topic><topic>Information sources</topic><topic>Insolvency</topic><topic>Linguistics</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nießner, Tobias</creatorcontrib><creatorcontrib>Gross, Daniel H</creatorcontrib><creatorcontrib>Schumann, Matthias</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of risk and financial management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nießner, Tobias</au><au>Gross, Daniel H</au><au>Schumann, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidential strategies in financial statement analysis: a corpus linguistic text mining approach to bankruptcy prediction</atitle><jtitle>Journal of risk and financial management</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>15</volume><issue>10</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1911-8074</issn><issn>1911-8066</issn><eissn>1911-8074</eissn><abstract>The qualitative information of companies’ financial statements provides useful information that can increase the accuracy of bankruptcy prediction models. In this research, a dataset of 924,903 financial statements from 355,704 German companies classified into solvent, financially distressed, and bankrupt companies using the Amadeus database from Bureau van Dijk was examined. The results provide empirical evidence that a corpus linguistic approach implementing evidential strategy analysis towards financial statements helps to distinguish between companies’ financial situations. They show that companies use different approaches and confidence assessments when evaluating their financial statements based on solvency and vary their use of evidential strategies accordingly. This leads to the proposition of a procedure to quantify and generate features based on the analysis of evidential strategies that can be used to improve corporate bankruptcy prediction. The results presented here stem from an interdisciplinary adaptation of linguistic findings and provide future research with another means of analysis in the area of text mining.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jrfm15100459</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9333-7013</orcidid><orcidid>https://orcid.org/0000-0001-7577-448X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1911-8074 |
ispartof | Journal of risk and financial management, 2022-10, Vol.15 (10), p.1-15 |
issn | 1911-8074 1911-8066 1911-8074 |
language | eng |
recordid | cdi_proquest_journals_2728484416 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Bankruptcy Data mining Financial statement analysis German language Information sources Insolvency Linguistics Semantics |
title | Evidential strategies in financial statement analysis: a corpus linguistic text mining approach to bankruptcy prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidential%20strategies%20in%20financial%20statement%20analysis:%20a%20corpus%20linguistic%20text%20mining%20approach%20to%20bankruptcy%20prediction&rft.jtitle=Journal%20of%20risk%20and%20financial%20management&rft.au=Nie%C3%9Fner,%20Tobias&rft.date=2022-10-01&rft.volume=15&rft.issue=10&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1911-8074&rft.eissn=1911-8074&rft_id=info:doi/10.3390/jrfm15100459&rft_dat=%3Cproquest_cross%3E2728484416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728484416&rft_id=info:pmid/&rfr_iscdi=true |