Evidential strategies in financial statement analysis: a corpus linguistic text mining approach to bankruptcy prediction

The qualitative information of companies’ financial statements provides useful information that can increase the accuracy of bankruptcy prediction models. In this research, a dataset of 924,903 financial statements from 355,704 German companies classified into solvent, financially distressed, and ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of risk and financial management 2022-10, Vol.15 (10), p.1-15
Hauptverfasser: Nießner, Tobias, Gross, Daniel H, Schumann, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 10
container_start_page 1
container_title Journal of risk and financial management
container_volume 15
creator Nießner, Tobias
Gross, Daniel H
Schumann, Matthias
description The qualitative information of companies’ financial statements provides useful information that can increase the accuracy of bankruptcy prediction models. In this research, a dataset of 924,903 financial statements from 355,704 German companies classified into solvent, financially distressed, and bankrupt companies using the Amadeus database from Bureau van Dijk was examined. The results provide empirical evidence that a corpus linguistic approach implementing evidential strategy analysis towards financial statements helps to distinguish between companies’ financial situations. They show that companies use different approaches and confidence assessments when evaluating their financial statements based on solvency and vary their use of evidential strategies accordingly. This leads to the proposition of a procedure to quantify and generate features based on the analysis of evidential strategies that can be used to improve corporate bankruptcy prediction. The results presented here stem from an interdisciplinary adaptation of linguistic findings and provide future research with another means of analysis in the area of text mining.
doi_str_mv 10.3390/jrfm15100459
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2728484416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728484416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-516be1a16dfe06cb9a1daf1a770d087e9a0673b6bc07270856ace9caec79df813</originalsourceid><addsrcrecordid>eNpN0E1Lw0AQBuBFFCy1N39AwKvRmWyyH0cp1QoFL3oOk82ubGg2dTcV-u-NRLCnGYZnhuFl7BbhgXMNj110PVYIUFb6gi1QI-YKZHl51l-zVUodACBMO1wtWLX59q0No6d9lsZIo_30NmU-ZM4HCmaeT-N-QhkF2p-STzfsytE-2dVfXbKP5837epvv3l5e10-73PBCjHmForFIKFpnQZhGE7bkkKSEFpS0mkBI3ojGgCwkqEqQsdqQNVK3TiFfsrv57iEOX0ebxrobjnF6ItWFLFSpyhLFpO5nZeKQUrSuPkTfUzzVCPVvNvV5NhPPZm7NEHz6x4oDSJBc8R-0dGGI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728484416</pqid></control><display><type>article</type><title>Evidential strategies in financial statement analysis: a corpus linguistic text mining approach to bankruptcy prediction</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nießner, Tobias ; Gross, Daniel H ; Schumann, Matthias</creator><creatorcontrib>Nießner, Tobias ; Gross, Daniel H ; Schumann, Matthias</creatorcontrib><description>The qualitative information of companies’ financial statements provides useful information that can increase the accuracy of bankruptcy prediction models. In this research, a dataset of 924,903 financial statements from 355,704 German companies classified into solvent, financially distressed, and bankrupt companies using the Amadeus database from Bureau van Dijk was examined. The results provide empirical evidence that a corpus linguistic approach implementing evidential strategy analysis towards financial statements helps to distinguish between companies’ financial situations. They show that companies use different approaches and confidence assessments when evaluating their financial statements based on solvency and vary their use of evidential strategies accordingly. This leads to the proposition of a procedure to quantify and generate features based on the analysis of evidential strategies that can be used to improve corporate bankruptcy prediction. The results presented here stem from an interdisciplinary adaptation of linguistic findings and provide future research with another means of analysis in the area of text mining.</description><identifier>ISSN: 1911-8074</identifier><identifier>ISSN: 1911-8066</identifier><identifier>EISSN: 1911-8074</identifier><identifier>DOI: 10.3390/jrfm15100459</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bankruptcy ; Data mining ; Financial statement analysis ; German language ; Information sources ; Insolvency ; Linguistics ; Semantics</subject><ispartof>Journal of risk and financial management, 2022-10, Vol.15 (10), p.1-15</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-516be1a16dfe06cb9a1daf1a770d087e9a0673b6bc07270856ace9caec79df813</citedby><cites>FETCH-LOGICAL-c326t-516be1a16dfe06cb9a1daf1a770d087e9a0673b6bc07270856ace9caec79df813</cites><orcidid>0000-0001-9333-7013 ; 0000-0001-7577-448X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Nießner, Tobias</creatorcontrib><creatorcontrib>Gross, Daniel H</creatorcontrib><creatorcontrib>Schumann, Matthias</creatorcontrib><title>Evidential strategies in financial statement analysis: a corpus linguistic text mining approach to bankruptcy prediction</title><title>Journal of risk and financial management</title><description>The qualitative information of companies’ financial statements provides useful information that can increase the accuracy of bankruptcy prediction models. In this research, a dataset of 924,903 financial statements from 355,704 German companies classified into solvent, financially distressed, and bankrupt companies using the Amadeus database from Bureau van Dijk was examined. The results provide empirical evidence that a corpus linguistic approach implementing evidential strategy analysis towards financial statements helps to distinguish between companies’ financial situations. They show that companies use different approaches and confidence assessments when evaluating their financial statements based on solvency and vary their use of evidential strategies accordingly. This leads to the proposition of a procedure to quantify and generate features based on the analysis of evidential strategies that can be used to improve corporate bankruptcy prediction. The results presented here stem from an interdisciplinary adaptation of linguistic findings and provide future research with another means of analysis in the area of text mining.</description><subject>Bankruptcy</subject><subject>Data mining</subject><subject>Financial statement analysis</subject><subject>German language</subject><subject>Information sources</subject><subject>Insolvency</subject><subject>Linguistics</subject><subject>Semantics</subject><issn>1911-8074</issn><issn>1911-8066</issn><issn>1911-8074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpN0E1Lw0AQBuBFFCy1N39AwKvRmWyyH0cp1QoFL3oOk82ubGg2dTcV-u-NRLCnGYZnhuFl7BbhgXMNj110PVYIUFb6gi1QI-YKZHl51l-zVUodACBMO1wtWLX59q0No6d9lsZIo_30NmU-ZM4HCmaeT-N-QhkF2p-STzfsytE-2dVfXbKP5837epvv3l5e10-73PBCjHmForFIKFpnQZhGE7bkkKSEFpS0mkBI3ojGgCwkqEqQsdqQNVK3TiFfsrv57iEOX0ebxrobjnF6ItWFLFSpyhLFpO5nZeKQUrSuPkTfUzzVCPVvNvV5NhPPZm7NEHz6x4oDSJBc8R-0dGGI</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Nießner, Tobias</creator><creator>Gross, Daniel H</creator><creator>Schumann, Matthias</creator><general>MDPI AG</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9333-7013</orcidid><orcidid>https://orcid.org/0000-0001-7577-448X</orcidid></search><sort><creationdate>20221001</creationdate><title>Evidential strategies in financial statement analysis</title><author>Nießner, Tobias ; Gross, Daniel H ; Schumann, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-516be1a16dfe06cb9a1daf1a770d087e9a0673b6bc07270856ace9caec79df813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bankruptcy</topic><topic>Data mining</topic><topic>Financial statement analysis</topic><topic>German language</topic><topic>Information sources</topic><topic>Insolvency</topic><topic>Linguistics</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nießner, Tobias</creatorcontrib><creatorcontrib>Gross, Daniel H</creatorcontrib><creatorcontrib>Schumann, Matthias</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of risk and financial management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nießner, Tobias</au><au>Gross, Daniel H</au><au>Schumann, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidential strategies in financial statement analysis: a corpus linguistic text mining approach to bankruptcy prediction</atitle><jtitle>Journal of risk and financial management</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>15</volume><issue>10</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1911-8074</issn><issn>1911-8066</issn><eissn>1911-8074</eissn><abstract>The qualitative information of companies’ financial statements provides useful information that can increase the accuracy of bankruptcy prediction models. In this research, a dataset of 924,903 financial statements from 355,704 German companies classified into solvent, financially distressed, and bankrupt companies using the Amadeus database from Bureau van Dijk was examined. The results provide empirical evidence that a corpus linguistic approach implementing evidential strategy analysis towards financial statements helps to distinguish between companies’ financial situations. They show that companies use different approaches and confidence assessments when evaluating their financial statements based on solvency and vary their use of evidential strategies accordingly. This leads to the proposition of a procedure to quantify and generate features based on the analysis of evidential strategies that can be used to improve corporate bankruptcy prediction. The results presented here stem from an interdisciplinary adaptation of linguistic findings and provide future research with another means of analysis in the area of text mining.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jrfm15100459</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9333-7013</orcidid><orcidid>https://orcid.org/0000-0001-7577-448X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1911-8074
ispartof Journal of risk and financial management, 2022-10, Vol.15 (10), p.1-15
issn 1911-8074
1911-8066
1911-8074
language eng
recordid cdi_proquest_journals_2728484416
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Bankruptcy
Data mining
Financial statement analysis
German language
Information sources
Insolvency
Linguistics
Semantics
title Evidential strategies in financial statement analysis: a corpus linguistic text mining approach to bankruptcy prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidential%20strategies%20in%20financial%20statement%20analysis:%20a%20corpus%20linguistic%20text%20mining%20approach%20to%20bankruptcy%20prediction&rft.jtitle=Journal%20of%20risk%20and%20financial%20management&rft.au=Nie%C3%9Fner,%20Tobias&rft.date=2022-10-01&rft.volume=15&rft.issue=10&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1911-8074&rft.eissn=1911-8074&rft_id=info:doi/10.3390/jrfm15100459&rft_dat=%3Cproquest_cross%3E2728484416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728484416&rft_id=info:pmid/&rfr_iscdi=true