Recent Advances in Pulse-Coupled Neural Networks with Applications in Image Processing
This paper surveys recent advances in pulse-coupled neural networks (PCNNs) and their applications in image processing. The PCNN is a neurology-inspired neural network model that aims to imitate the information analysis process of the biological cortex. In recent years, many PCNN-derived models have...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-10, Vol.11 (20), p.3264 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 3264 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Liu, Haoran Liu, Mingzhe Li, Dongfen Zheng, Wenfeng Yin, Lirong Wang, Ruili |
description | This paper surveys recent advances in pulse-coupled neural networks (PCNNs) and their applications in image processing. The PCNN is a neurology-inspired neural network model that aims to imitate the information analysis process of the biological cortex. In recent years, many PCNN-derived models have been developed. Research aims with respect to these models can be divided into three categories: (1) to reduce the number of manual parameters, (2) to achieve better real cortex imitation performance, and (3) to combine them with other methodologies. We provide a comprehensive and schematic review of these novel PCNN-derived models. Moreover, the PCNN has been widely used in the image processing field due to its outstanding information extraction ability. We review the recent applications of PCNN-derived models in image processing, providing a general framework for the state of the art and a better understanding of PCNNs with applications in image processing. In conclusion, PCNN models are developing rapidly, and it is projected that more applications of these novel emerging models will be seen in future. |
doi_str_mv | 10.3390/electronics11203264 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2728469448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745597714</galeid><sourcerecordid>A745597714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-7539a11c1df0aa33b95b202624b27696d20663b6d75f5f7ee726982d5e2475cf3</originalsourceid><addsrcrecordid>eNptUMtKw0AUDaJg0X6Bm4Dr1HlPZlmKj0LRIuo2TCY3dWo6E2cSi3_vaF248N7FuVzOA06WXWA0o1ShK-jADME7ayLGBFEi2FE2IUiqQhFFjv_cp9k0xi1KozAtKZpkL49gwA35vPnQzkDMrcvXYxehWPix76DJ72EMuksw7H14i_neDq_5vO87a_RgvfuRLHd6A_k6-GQRrducZyetTi7TXzzLnm-unxZ3xerhdrmYrwpDBR4KyanSGBvctEhrSmvFa4KIIKwmUijRECQErUUjectbCSCJUCVpOBAmuWnpWXZ58O2Dfx8hDtXWj8GlyIpIUjKhGCsTa3ZgbXQHlXWtH4I2aRvYWeMdtDb955JxrqTELAnoQWCCjzFAW_XB7nT4rDCqvkuv_imdfgG9QHcN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728469448</pqid></control><display><type>article</type><title>Recent Advances in Pulse-Coupled Neural Networks with Applications in Image Processing</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Haoran ; Liu, Mingzhe ; Li, Dongfen ; Zheng, Wenfeng ; Yin, Lirong ; Wang, Ruili</creator><creatorcontrib>Liu, Haoran ; Liu, Mingzhe ; Li, Dongfen ; Zheng, Wenfeng ; Yin, Lirong ; Wang, Ruili</creatorcontrib><description>This paper surveys recent advances in pulse-coupled neural networks (PCNNs) and their applications in image processing. The PCNN is a neurology-inspired neural network model that aims to imitate the information analysis process of the biological cortex. In recent years, many PCNN-derived models have been developed. Research aims with respect to these models can be divided into three categories: (1) to reduce the number of manual parameters, (2) to achieve better real cortex imitation performance, and (3) to combine them with other methodologies. We provide a comprehensive and schematic review of these novel PCNN-derived models. Moreover, the PCNN has been widely used in the image processing field due to its outstanding information extraction ability. We review the recent applications of PCNN-derived models in image processing, providing a general framework for the state of the art and a better understanding of PCNNs with applications in image processing. In conclusion, PCNN models are developing rapidly, and it is projected that more applications of these novel emerging models will be seen in future.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11203264</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biological activity ; Data analysis ; Feedback ; Image processing ; Information management ; Information retrieval ; Methods ; Neural networks ; Neurology ; Neurons ; Object recognition (Computers) ; Pattern recognition</subject><ispartof>Electronics (Basel), 2022-10, Vol.11 (20), p.3264</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-7539a11c1df0aa33b95b202624b27696d20663b6d75f5f7ee726982d5e2475cf3</citedby><cites>FETCH-LOGICAL-c361t-7539a11c1df0aa33b95b202624b27696d20663b6d75f5f7ee726982d5e2475cf3</cites><orcidid>0000-0003-0729-4526 ; 0000-0002-5022-610X ; 0000-0001-7054-997X ; 0000-0002-8486-1654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Haoran</creatorcontrib><creatorcontrib>Liu, Mingzhe</creatorcontrib><creatorcontrib>Li, Dongfen</creatorcontrib><creatorcontrib>Zheng, Wenfeng</creatorcontrib><creatorcontrib>Yin, Lirong</creatorcontrib><creatorcontrib>Wang, Ruili</creatorcontrib><title>Recent Advances in Pulse-Coupled Neural Networks with Applications in Image Processing</title><title>Electronics (Basel)</title><description>This paper surveys recent advances in pulse-coupled neural networks (PCNNs) and their applications in image processing. The PCNN is a neurology-inspired neural network model that aims to imitate the information analysis process of the biological cortex. In recent years, many PCNN-derived models have been developed. Research aims with respect to these models can be divided into three categories: (1) to reduce the number of manual parameters, (2) to achieve better real cortex imitation performance, and (3) to combine them with other methodologies. We provide a comprehensive and schematic review of these novel PCNN-derived models. Moreover, the PCNN has been widely used in the image processing field due to its outstanding information extraction ability. We review the recent applications of PCNN-derived models in image processing, providing a general framework for the state of the art and a better understanding of PCNNs with applications in image processing. In conclusion, PCNN models are developing rapidly, and it is projected that more applications of these novel emerging models will be seen in future.</description><subject>Biological activity</subject><subject>Data analysis</subject><subject>Feedback</subject><subject>Image processing</subject><subject>Information management</subject><subject>Information retrieval</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Object recognition (Computers)</subject><subject>Pattern recognition</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUMtKw0AUDaJg0X6Bm4Dr1HlPZlmKj0LRIuo2TCY3dWo6E2cSi3_vaF248N7FuVzOA06WXWA0o1ShK-jADME7ayLGBFEi2FE2IUiqQhFFjv_cp9k0xi1KozAtKZpkL49gwA35vPnQzkDMrcvXYxehWPix76DJ72EMuksw7H14i_neDq_5vO87a_RgvfuRLHd6A_k6-GQRrducZyetTi7TXzzLnm-unxZ3xerhdrmYrwpDBR4KyanSGBvctEhrSmvFa4KIIKwmUijRECQErUUjectbCSCJUCVpOBAmuWnpWXZ58O2Dfx8hDtXWj8GlyIpIUjKhGCsTa3ZgbXQHlXWtH4I2aRvYWeMdtDb955JxrqTELAnoQWCCjzFAW_XB7nT4rDCqvkuv_imdfgG9QHcN</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Liu, Haoran</creator><creator>Liu, Mingzhe</creator><creator>Li, Dongfen</creator><creator>Zheng, Wenfeng</creator><creator>Yin, Lirong</creator><creator>Wang, Ruili</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0729-4526</orcidid><orcidid>https://orcid.org/0000-0002-5022-610X</orcidid><orcidid>https://orcid.org/0000-0001-7054-997X</orcidid><orcidid>https://orcid.org/0000-0002-8486-1654</orcidid></search><sort><creationdate>20221001</creationdate><title>Recent Advances in Pulse-Coupled Neural Networks with Applications in Image Processing</title><author>Liu, Haoran ; Liu, Mingzhe ; Li, Dongfen ; Zheng, Wenfeng ; Yin, Lirong ; Wang, Ruili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-7539a11c1df0aa33b95b202624b27696d20663b6d75f5f7ee726982d5e2475cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological activity</topic><topic>Data analysis</topic><topic>Feedback</topic><topic>Image processing</topic><topic>Information management</topic><topic>Information retrieval</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Object recognition (Computers)</topic><topic>Pattern recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haoran</creatorcontrib><creatorcontrib>Liu, Mingzhe</creatorcontrib><creatorcontrib>Li, Dongfen</creatorcontrib><creatorcontrib>Zheng, Wenfeng</creatorcontrib><creatorcontrib>Yin, Lirong</creatorcontrib><creatorcontrib>Wang, Ruili</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haoran</au><au>Liu, Mingzhe</au><au>Li, Dongfen</au><au>Zheng, Wenfeng</au><au>Yin, Lirong</au><au>Wang, Ruili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Advances in Pulse-Coupled Neural Networks with Applications in Image Processing</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>11</volume><issue>20</issue><spage>3264</spage><pages>3264-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This paper surveys recent advances in pulse-coupled neural networks (PCNNs) and their applications in image processing. The PCNN is a neurology-inspired neural network model that aims to imitate the information analysis process of the biological cortex. In recent years, many PCNN-derived models have been developed. Research aims with respect to these models can be divided into three categories: (1) to reduce the number of manual parameters, (2) to achieve better real cortex imitation performance, and (3) to combine them with other methodologies. We provide a comprehensive and schematic review of these novel PCNN-derived models. Moreover, the PCNN has been widely used in the image processing field due to its outstanding information extraction ability. We review the recent applications of PCNN-derived models in image processing, providing a general framework for the state of the art and a better understanding of PCNNs with applications in image processing. In conclusion, PCNN models are developing rapidly, and it is projected that more applications of these novel emerging models will be seen in future.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11203264</doi><orcidid>https://orcid.org/0000-0003-0729-4526</orcidid><orcidid>https://orcid.org/0000-0002-5022-610X</orcidid><orcidid>https://orcid.org/0000-0001-7054-997X</orcidid><orcidid>https://orcid.org/0000-0002-8486-1654</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-10, Vol.11 (20), p.3264 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2728469448 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Biological activity Data analysis Feedback Image processing Information management Information retrieval Methods Neural networks Neurology Neurons Object recognition (Computers) Pattern recognition |
title | Recent Advances in Pulse-Coupled Neural Networks with Applications in Image Processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Advances%20in%20Pulse-Coupled%20Neural%20Networks%20with%20Applications%20in%20Image%20Processing&rft.jtitle=Electronics%20(Basel)&rft.au=Liu,%20Haoran&rft.date=2022-10-01&rft.volume=11&rft.issue=20&rft.spage=3264&rft.pages=3264-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11203264&rft_dat=%3Cgale_proqu%3EA745597714%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728469448&rft_id=info:pmid/&rft_galeid=A745597714&rfr_iscdi=true |