Hybrid Random Forest Survival Model to Predict Customer Membership Dropout
Dropout prediction is a problem that must be addressed in various organizations, as retaining customers is generally more profitable than attracting them. Existing approaches address the problem considering a dependent variable representing dropout or non-dropout, without considering the dynamic per...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-10, Vol.11 (20), p.3328 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 3328 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Sobreiro, Pedro Garcia-Alonso, José Martinho, Domingos Berrocal, Javier |
description | Dropout prediction is a problem that must be addressed in various organizations, as retaining customers is generally more profitable than attracting them. Existing approaches address the problem considering a dependent variable representing dropout or non-dropout, without considering the dynamic perspetive that the dropout risk changes over time. To solve this problem, we explore the use of random survival forests combined with clusters, in order to evaluate whether the prediction performance improves. The model performance was determined using the concordance probability, Brier Score and the error in the prediction considering 5200 customers of a Health Club. Our results show that the prediction performance in the survival models increased substantially in the models using clusters rather than that without clusters, with a statistically significant difference between the models. The model using a hybrid approach improved the accuracy of the survival model, providing support to develop countermeasures considering the period in which dropout is likely to occur. |
doi_str_mv | 10.3390/electronics11203328 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2728469412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745597778</galeid><sourcerecordid>A745597778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-c639591a5dc314d05bb7f84771a35f12cb2da504095e2826a72e2b40e0da42d73</originalsourceid><addsrcrecordid>eNptUMtOwzAQtBBIVKVfwMUS54CfdXysCqWgViAe58ixHXCVxMF2KvXvMSoHDuwe9qGZ2dUAcInRNaUS3djW6hR873TEmCBKSXkCJgQJWUgiyemf_hzMYtyhHBLTkqIJeFwf6uAMfFG98R1c-WBjgq9j2Lu9auHWG9vC5OFzsMbpBJdjTL6zAW5tV9sQP90Ab4Mf_JguwFmj2mhnv3UK3ld3b8t1sXm6f1guNoWmGKdCz6nkEitu8swM4nUtmpIJgRXlDSa6JkZxxJDklpRkrgSxpGbIIqMYMYJOwdVRdwj-a8zvVjs_hj6frIggJZtLhklGXR9RH6q1lesbn4LSOY3tnPa9bVzeLwTjXAohykygR4IOPsZgm2oIrlPhUGFU_Rhd_WM0_QavkHL9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728469412</pqid></control><display><type>article</type><title>Hybrid Random Forest Survival Model to Predict Customer Membership Dropout</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB Electronic Journals Library</source><creator>Sobreiro, Pedro ; Garcia-Alonso, José ; Martinho, Domingos ; Berrocal, Javier</creator><creatorcontrib>Sobreiro, Pedro ; Garcia-Alonso, José ; Martinho, Domingos ; Berrocal, Javier</creatorcontrib><description>Dropout prediction is a problem that must be addressed in various organizations, as retaining customers is generally more profitable than attracting them. Existing approaches address the problem considering a dependent variable representing dropout or non-dropout, without considering the dynamic perspetive that the dropout risk changes over time. To solve this problem, we explore the use of random survival forests combined with clusters, in order to evaluate whether the prediction performance improves. The model performance was determined using the concordance probability, Brier Score and the error in the prediction considering 5200 customers of a Health Club. Our results show that the prediction performance in the survival models increased substantially in the models using clusters rather than that without clusters, with a statistically significant difference between the models. The model using a hybrid approach improved the accuracy of the survival model, providing support to develop countermeasures considering the period in which dropout is likely to occur.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11203328</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Clusters ; Customer loyalty ; Customer retention ; Customer satisfaction ; Customers ; Dependent variables ; Health clubs ; Performance prediction ; Prediction theory ; Profitability ; Research methodology ; Survival ; Survival analysis</subject><ispartof>Electronics (Basel), 2022-10, Vol.11 (20), p.3328</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-c639591a5dc314d05bb7f84771a35f12cb2da504095e2826a72e2b40e0da42d73</cites><orcidid>0000-0002-6819-0299 ; 0000-0002-1007-2134 ; 0000-0002-5887-4814 ; 0000-0003-3971-3545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sobreiro, Pedro</creatorcontrib><creatorcontrib>Garcia-Alonso, José</creatorcontrib><creatorcontrib>Martinho, Domingos</creatorcontrib><creatorcontrib>Berrocal, Javier</creatorcontrib><title>Hybrid Random Forest Survival Model to Predict Customer Membership Dropout</title><title>Electronics (Basel)</title><description>Dropout prediction is a problem that must be addressed in various organizations, as retaining customers is generally more profitable than attracting them. Existing approaches address the problem considering a dependent variable representing dropout or non-dropout, without considering the dynamic perspetive that the dropout risk changes over time. To solve this problem, we explore the use of random survival forests combined with clusters, in order to evaluate whether the prediction performance improves. The model performance was determined using the concordance probability, Brier Score and the error in the prediction considering 5200 customers of a Health Club. Our results show that the prediction performance in the survival models increased substantially in the models using clusters rather than that without clusters, with a statistically significant difference between the models. The model using a hybrid approach improved the accuracy of the survival model, providing support to develop countermeasures considering the period in which dropout is likely to occur.</description><subject>Algorithms</subject><subject>Clusters</subject><subject>Customer loyalty</subject><subject>Customer retention</subject><subject>Customer satisfaction</subject><subject>Customers</subject><subject>Dependent variables</subject><subject>Health clubs</subject><subject>Performance prediction</subject><subject>Prediction theory</subject><subject>Profitability</subject><subject>Research methodology</subject><subject>Survival</subject><subject>Survival analysis</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUMtOwzAQtBBIVKVfwMUS54CfdXysCqWgViAe58ixHXCVxMF2KvXvMSoHDuwe9qGZ2dUAcInRNaUS3djW6hR873TEmCBKSXkCJgQJWUgiyemf_hzMYtyhHBLTkqIJeFwf6uAMfFG98R1c-WBjgq9j2Lu9auHWG9vC5OFzsMbpBJdjTL6zAW5tV9sQP90Ab4Mf_JguwFmj2mhnv3UK3ld3b8t1sXm6f1guNoWmGKdCz6nkEitu8swM4nUtmpIJgRXlDSa6JkZxxJDklpRkrgSxpGbIIqMYMYJOwdVRdwj-a8zvVjs_hj6frIggJZtLhklGXR9RH6q1lesbn4LSOY3tnPa9bVzeLwTjXAohykygR4IOPsZgm2oIrlPhUGFU_Rhd_WM0_QavkHL9</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Sobreiro, Pedro</creator><creator>Garcia-Alonso, José</creator><creator>Martinho, Domingos</creator><creator>Berrocal, Javier</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6819-0299</orcidid><orcidid>https://orcid.org/0000-0002-1007-2134</orcidid><orcidid>https://orcid.org/0000-0002-5887-4814</orcidid><orcidid>https://orcid.org/0000-0003-3971-3545</orcidid></search><sort><creationdate>20221001</creationdate><title>Hybrid Random Forest Survival Model to Predict Customer Membership Dropout</title><author>Sobreiro, Pedro ; Garcia-Alonso, José ; Martinho, Domingos ; Berrocal, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-c639591a5dc314d05bb7f84771a35f12cb2da504095e2826a72e2b40e0da42d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Clusters</topic><topic>Customer loyalty</topic><topic>Customer retention</topic><topic>Customer satisfaction</topic><topic>Customers</topic><topic>Dependent variables</topic><topic>Health clubs</topic><topic>Performance prediction</topic><topic>Prediction theory</topic><topic>Profitability</topic><topic>Research methodology</topic><topic>Survival</topic><topic>Survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sobreiro, Pedro</creatorcontrib><creatorcontrib>Garcia-Alonso, José</creatorcontrib><creatorcontrib>Martinho, Domingos</creatorcontrib><creatorcontrib>Berrocal, Javier</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sobreiro, Pedro</au><au>Garcia-Alonso, José</au><au>Martinho, Domingos</au><au>Berrocal, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Random Forest Survival Model to Predict Customer Membership Dropout</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>11</volume><issue>20</issue><spage>3328</spage><pages>3328-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Dropout prediction is a problem that must be addressed in various organizations, as retaining customers is generally more profitable than attracting them. Existing approaches address the problem considering a dependent variable representing dropout or non-dropout, without considering the dynamic perspetive that the dropout risk changes over time. To solve this problem, we explore the use of random survival forests combined with clusters, in order to evaluate whether the prediction performance improves. The model performance was determined using the concordance probability, Brier Score and the error in the prediction considering 5200 customers of a Health Club. Our results show that the prediction performance in the survival models increased substantially in the models using clusters rather than that without clusters, with a statistically significant difference between the models. The model using a hybrid approach improved the accuracy of the survival model, providing support to develop countermeasures considering the period in which dropout is likely to occur.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11203328</doi><orcidid>https://orcid.org/0000-0002-6819-0299</orcidid><orcidid>https://orcid.org/0000-0002-1007-2134</orcidid><orcidid>https://orcid.org/0000-0002-5887-4814</orcidid><orcidid>https://orcid.org/0000-0003-3971-3545</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-10, Vol.11 (20), p.3328 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2728469412 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB Electronic Journals Library |
subjects | Algorithms Clusters Customer loyalty Customer retention Customer satisfaction Customers Dependent variables Health clubs Performance prediction Prediction theory Profitability Research methodology Survival Survival analysis |
title | Hybrid Random Forest Survival Model to Predict Customer Membership Dropout |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A19%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Random%20Forest%20Survival%20Model%20to%20Predict%20Customer%20Membership%20Dropout&rft.jtitle=Electronics%20(Basel)&rft.au=Sobreiro,%20Pedro&rft.date=2022-10-01&rft.volume=11&rft.issue=20&rft.spage=3328&rft.pages=3328-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11203328&rft_dat=%3Cgale_proqu%3EA745597778%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728469412&rft_id=info:pmid/&rft_galeid=A745597778&rfr_iscdi=true |