Towards Robotic Marble Resin Application: Crack Detection on Marble Using Deep Learning
Cracks can occur on different surfaces such as buildings, roads, aircrafts, etc. The manual inspection of cracks is time-consuming and prone to human error. Machine vision has been used for decades to detect defects in materials in production lines. However, the detection or segmentation of cracks o...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-10, Vol.11 (20), p.3289 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 3289 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Vrochidou, Eleni Sidiropoulos, George K. Ouzounis, Athanasios G. Lampoglou, Anastasia Tsimperidis, Ioannis Papakostas, George A. Sarafis, Ilias T. Kalpakis, Vassilis Stamkos, Andreas |
description | Cracks can occur on different surfaces such as buildings, roads, aircrafts, etc. The manual inspection of cracks is time-consuming and prone to human error. Machine vision has been used for decades to detect defects in materials in production lines. However, the detection or segmentation of cracks on a randomly textured surface, such as marble, has not been sufficiently investigated. This work provides an up-to-date systematic and exhaustive study on marble crack segmentation with color images based on deep learning (DL) techniques. The authors conducted a performance evaluation of 112 DL segmentation models with red–green–blue (RGB) marble slab images using five-fold cross-validation, providing consistent evaluation metrics in terms of Intersection over Union (IoU), precision, recall and F1 score to identify the segmentation challenges related to marble cracks’ physiology. Comparative results reveal the FPN model as the most efficient architecture, scoring 71.35% mean IoU, and SE-ResNet as the most effective feature extraction network family. The results indicate the importance of selecting the appropriate Loss function and backbone network, underline the challenges related to the marble crack segmentation problem, and pose an important step towards the robotic automation of crack segmentation and simultaneous resin application to heal cracks in marble-processing plants. |
doi_str_mv | 10.3390/electronics11203289 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2728468364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745597739</galeid><sourcerecordid>A745597739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2d92935aa06907025f28ec1d4c373f6ab335a8095f7829912692242ce78833233</originalsourceid><addsrcrecordid>eNptUEtLAzEQDqJgqf0FXgKetyYzu5vEW6lPqAilxeOSZrMldbtZky3ivzfSHjw4MzCvb56EXHM2RVTs1rbWDMF3zkTOgSFIdUZGwITKFCg4_2NfkkmMO5ZIcZTIRuR95b90qCNd-o0fnKGvOmxaS5c2uo7O-r51Rg_Od3d0HrT5oPd2SONSgCY5gdcJu00Z29OF1aFL3hW5aHQb7eSkx2T9-LCaP2eLt6eX-WyRGVB8yKBOa2GhNSsVEwyKBqQ1vM4NCmxKvcGUlEwVjZCgFIdSAeRgrJASERDH5ObYtw_-82DjUO38IXRpZAUCZF5KLPOEmh5RW93aynWNH9IxiWu7d8Z3tnEpPhN5USghUKUCPBaY4GMMtqn64PY6fFecVb9fr_75Ov4ACQR12A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728468364</pqid></control><display><type>article</type><title>Towards Robotic Marble Resin Application: Crack Detection on Marble Using Deep Learning</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Vrochidou, Eleni ; Sidiropoulos, George K. ; Ouzounis, Athanasios G. ; Lampoglou, Anastasia ; Tsimperidis, Ioannis ; Papakostas, George A. ; Sarafis, Ilias T. ; Kalpakis, Vassilis ; Stamkos, Andreas</creator><creatorcontrib>Vrochidou, Eleni ; Sidiropoulos, George K. ; Ouzounis, Athanasios G. ; Lampoglou, Anastasia ; Tsimperidis, Ioannis ; Papakostas, George A. ; Sarafis, Ilias T. ; Kalpakis, Vassilis ; Stamkos, Andreas</creatorcontrib><description>Cracks can occur on different surfaces such as buildings, roads, aircrafts, etc. The manual inspection of cracks is time-consuming and prone to human error. Machine vision has been used for decades to detect defects in materials in production lines. However, the detection or segmentation of cracks on a randomly textured surface, such as marble, has not been sufficiently investigated. This work provides an up-to-date systematic and exhaustive study on marble crack segmentation with color images based on deep learning (DL) techniques. The authors conducted a performance evaluation of 112 DL segmentation models with red–green–blue (RGB) marble slab images using five-fold cross-validation, providing consistent evaluation metrics in terms of Intersection over Union (IoU), precision, recall and F1 score to identify the segmentation challenges related to marble cracks’ physiology. Comparative results reveal the FPN model as the most efficient architecture, scoring 71.35% mean IoU, and SE-ResNet as the most effective feature extraction network family. The results indicate the importance of selecting the appropriate Loss function and backbone network, underline the challenges related to the marble crack segmentation problem, and pose an important step towards the robotic automation of crack segmentation and simultaneous resin application to heal cracks in marble-processing plants.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11203289</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Classification ; Color imagery ; Computer networks ; Cracks ; Datasets ; Deep learning ; Feature extraction ; Flaw detection ; Human error ; Image processing ; Image segmentation ; Inspection ; Machine learning ; Machine vision ; Marble ; Mechanical properties ; Neural networks ; Performance evaluation ; Physiology ; Production lines ; Quarries ; Resins ; Robotics ; Vision systems</subject><ispartof>Electronics (Basel), 2022-10, Vol.11 (20), p.3289</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2d92935aa06907025f28ec1d4c373f6ab335a8095f7829912692242ce78833233</citedby><cites>FETCH-LOGICAL-c291t-2d92935aa06907025f28ec1d4c373f6ab335a8095f7829912692242ce78833233</cites><orcidid>0000-0002-3722-0934 ; 0000-0003-0682-1750 ; 0000-0002-0148-8592 ; 0000-0001-5545-1499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Vrochidou, Eleni</creatorcontrib><creatorcontrib>Sidiropoulos, George K.</creatorcontrib><creatorcontrib>Ouzounis, Athanasios G.</creatorcontrib><creatorcontrib>Lampoglou, Anastasia</creatorcontrib><creatorcontrib>Tsimperidis, Ioannis</creatorcontrib><creatorcontrib>Papakostas, George A.</creatorcontrib><creatorcontrib>Sarafis, Ilias T.</creatorcontrib><creatorcontrib>Kalpakis, Vassilis</creatorcontrib><creatorcontrib>Stamkos, Andreas</creatorcontrib><title>Towards Robotic Marble Resin Application: Crack Detection on Marble Using Deep Learning</title><title>Electronics (Basel)</title><description>Cracks can occur on different surfaces such as buildings, roads, aircrafts, etc. The manual inspection of cracks is time-consuming and prone to human error. Machine vision has been used for decades to detect defects in materials in production lines. However, the detection or segmentation of cracks on a randomly textured surface, such as marble, has not been sufficiently investigated. This work provides an up-to-date systematic and exhaustive study on marble crack segmentation with color images based on deep learning (DL) techniques. The authors conducted a performance evaluation of 112 DL segmentation models with red–green–blue (RGB) marble slab images using five-fold cross-validation, providing consistent evaluation metrics in terms of Intersection over Union (IoU), precision, recall and F1 score to identify the segmentation challenges related to marble cracks’ physiology. Comparative results reveal the FPN model as the most efficient architecture, scoring 71.35% mean IoU, and SE-ResNet as the most effective feature extraction network family. The results indicate the importance of selecting the appropriate Loss function and backbone network, underline the challenges related to the marble crack segmentation problem, and pose an important step towards the robotic automation of crack segmentation and simultaneous resin application to heal cracks in marble-processing plants.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Color imagery</subject><subject>Computer networks</subject><subject>Cracks</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Flaw detection</subject><subject>Human error</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Inspection</subject><subject>Machine learning</subject><subject>Machine vision</subject><subject>Marble</subject><subject>Mechanical properties</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Physiology</subject><subject>Production lines</subject><subject>Quarries</subject><subject>Resins</subject><subject>Robotics</subject><subject>Vision systems</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUEtLAzEQDqJgqf0FXgKetyYzu5vEW6lPqAilxeOSZrMldbtZky3ivzfSHjw4MzCvb56EXHM2RVTs1rbWDMF3zkTOgSFIdUZGwITKFCg4_2NfkkmMO5ZIcZTIRuR95b90qCNd-o0fnKGvOmxaS5c2uo7O-r51Rg_Od3d0HrT5oPd2SONSgCY5gdcJu00Z29OF1aFL3hW5aHQb7eSkx2T9-LCaP2eLt6eX-WyRGVB8yKBOa2GhNSsVEwyKBqQ1vM4NCmxKvcGUlEwVjZCgFIdSAeRgrJASERDH5ObYtw_-82DjUO38IXRpZAUCZF5KLPOEmh5RW93aynWNH9IxiWu7d8Z3tnEpPhN5USghUKUCPBaY4GMMtqn64PY6fFecVb9fr_75Ov4ACQR12A</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Vrochidou, Eleni</creator><creator>Sidiropoulos, George K.</creator><creator>Ouzounis, Athanasios G.</creator><creator>Lampoglou, Anastasia</creator><creator>Tsimperidis, Ioannis</creator><creator>Papakostas, George A.</creator><creator>Sarafis, Ilias T.</creator><creator>Kalpakis, Vassilis</creator><creator>Stamkos, Andreas</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3722-0934</orcidid><orcidid>https://orcid.org/0000-0003-0682-1750</orcidid><orcidid>https://orcid.org/0000-0002-0148-8592</orcidid><orcidid>https://orcid.org/0000-0001-5545-1499</orcidid></search><sort><creationdate>20221001</creationdate><title>Towards Robotic Marble Resin Application: Crack Detection on Marble Using Deep Learning</title><author>Vrochidou, Eleni ; Sidiropoulos, George K. ; Ouzounis, Athanasios G. ; Lampoglou, Anastasia ; Tsimperidis, Ioannis ; Papakostas, George A. ; Sarafis, Ilias T. ; Kalpakis, Vassilis ; Stamkos, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2d92935aa06907025f28ec1d4c373f6ab335a8095f7829912692242ce78833233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Color imagery</topic><topic>Computer networks</topic><topic>Cracks</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Flaw detection</topic><topic>Human error</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Inspection</topic><topic>Machine learning</topic><topic>Machine vision</topic><topic>Marble</topic><topic>Mechanical properties</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Physiology</topic><topic>Production lines</topic><topic>Quarries</topic><topic>Resins</topic><topic>Robotics</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vrochidou, Eleni</creatorcontrib><creatorcontrib>Sidiropoulos, George K.</creatorcontrib><creatorcontrib>Ouzounis, Athanasios G.</creatorcontrib><creatorcontrib>Lampoglou, Anastasia</creatorcontrib><creatorcontrib>Tsimperidis, Ioannis</creatorcontrib><creatorcontrib>Papakostas, George A.</creatorcontrib><creatorcontrib>Sarafis, Ilias T.</creatorcontrib><creatorcontrib>Kalpakis, Vassilis</creatorcontrib><creatorcontrib>Stamkos, Andreas</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vrochidou, Eleni</au><au>Sidiropoulos, George K.</au><au>Ouzounis, Athanasios G.</au><au>Lampoglou, Anastasia</au><au>Tsimperidis, Ioannis</au><au>Papakostas, George A.</au><au>Sarafis, Ilias T.</au><au>Kalpakis, Vassilis</au><au>Stamkos, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Robotic Marble Resin Application: Crack Detection on Marble Using Deep Learning</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>11</volume><issue>20</issue><spage>3289</spage><pages>3289-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Cracks can occur on different surfaces such as buildings, roads, aircrafts, etc. The manual inspection of cracks is time-consuming and prone to human error. Machine vision has been used for decades to detect defects in materials in production lines. However, the detection or segmentation of cracks on a randomly textured surface, such as marble, has not been sufficiently investigated. This work provides an up-to-date systematic and exhaustive study on marble crack segmentation with color images based on deep learning (DL) techniques. The authors conducted a performance evaluation of 112 DL segmentation models with red–green–blue (RGB) marble slab images using five-fold cross-validation, providing consistent evaluation metrics in terms of Intersection over Union (IoU), precision, recall and F1 score to identify the segmentation challenges related to marble cracks’ physiology. Comparative results reveal the FPN model as the most efficient architecture, scoring 71.35% mean IoU, and SE-ResNet as the most effective feature extraction network family. The results indicate the importance of selecting the appropriate Loss function and backbone network, underline the challenges related to the marble crack segmentation problem, and pose an important step towards the robotic automation of crack segmentation and simultaneous resin application to heal cracks in marble-processing plants.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11203289</doi><orcidid>https://orcid.org/0000-0002-3722-0934</orcidid><orcidid>https://orcid.org/0000-0003-0682-1750</orcidid><orcidid>https://orcid.org/0000-0002-0148-8592</orcidid><orcidid>https://orcid.org/0000-0001-5545-1499</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-10, Vol.11 (20), p.3289 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2728468364 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Artificial intelligence Classification Color imagery Computer networks Cracks Datasets Deep learning Feature extraction Flaw detection Human error Image processing Image segmentation Inspection Machine learning Machine vision Marble Mechanical properties Neural networks Performance evaluation Physiology Production lines Quarries Resins Robotics Vision systems |
title | Towards Robotic Marble Resin Application: Crack Detection on Marble Using Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T03%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Robotic%20Marble%20Resin%20Application:%20Crack%20Detection%20on%20Marble%20Using%20Deep%20Learning&rft.jtitle=Electronics%20(Basel)&rft.au=Vrochidou,%20Eleni&rft.date=2022-10-01&rft.volume=11&rft.issue=20&rft.spage=3289&rft.pages=3289-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11203289&rft_dat=%3Cgale_proqu%3EA745597739%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728468364&rft_id=info:pmid/&rft_galeid=A745597739&rfr_iscdi=true |