Comparative Study of Carbonaceous and Polymer Conductive Additives on Anticorrosion Performance of Epoxy Zinc-Rich Primer
Zinc-rich primers are among the most promising organic coating systems for improving the corrosion resistance of metals in the marine environment. However, the high zinc content results in poor coating adhesion, high cost, insecurity and pollution. To decrease the zinc dust content, the carbonaceous...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2022-10, Vol.12 (10), p.1473 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 1473 |
container_title | Coatings (Basel) |
container_volume | 12 |
creator | Lv, Xiao Jin, Xuliang Zhang, Zongxuan Bai, Yuxing Guo, Tingting Zhang, Li Zhang, Hui Zhu, Jesse Shao, Yuanyuan Zhang, Haiping Yuan, Bin Yin, Aiming Nie, Jinfeng Cao, Fan Xu, Zhengjun |
description | Zinc-rich primers are among the most promising organic coating systems for improving the corrosion resistance of metals in the marine environment. However, the high zinc content results in poor coating adhesion, high cost, insecurity and pollution. To decrease the zinc dust content, the carbonaceous and polymer conductive additives carbon black (CB), conductive graphite (CG), multiwalled carbon nanotubes (MWCNT) and polyaniline (PANI) were introduced to partially replace the zinc dust in the primers. A comparative study of the anticorrosion performance of epoxy zinc-rich primer (ZRP) is presented herein to systematically discuss and elaborate on the effects of the different conductive additives. There were no blisters, rust or corrosion products presented on the coatings of the CB-modified series due to the good dispersion and conductivity of nanosized CB clusters, while the zinc corrosion products covered the surface of the MWCNT-modified series samples, which was attributed to the excessive electrical conductivity resulting in high consumption of zinc powder. The lamellar CG provided an additional blocking barrier for the coatings based on the maze effect. The transition from the intrinsic state to the doped state of PANI resulted in corrosion protection for the coatings depending on the cathodic and barrier function. The experimental results suggested that the formula with 2 wt.% CB and 67 wt.% zinc dust had the most promising anticorrosion properties, which was also demonstrated by the high Rct and low CPEdl values calculated according to the equivalent electrical circuit analyses. |
doi_str_mv | 10.3390/coatings12101473 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2728458656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745498291</galeid><sourcerecordid>A745498291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-87691a7c9526aff7df0752c7dbfaa4ad709c59259643c64299ade371210d438f3</originalsourceid><addsrcrecordid>eNpdUUtLAzEQDqJgqb17DHhezWs3m2NZ6gMKFh8XL0uaR01pkzXZFfffm1oP4sxhHnzzDd8MAJcYXVMq0I0Ksnd-kzDBCDNOT8CEIC6KimFy-ic_B7OUtiibwLTGYgLGJuw7GfP4p4HP_aBHGCxsZFwHL5UJQ4LSa7gKu3FvImyC14P6Ac-1dockweDh3PdOhRhDcrlamWhD3EuvzIFt0YWvEb45r4onp97hKrrMdQHOrNwlM_uNU_B6u3hp7ovl491DM18WipakL2peCSy5EiWppLVcW8RLorheWymZ1BwJVQpSiopRVTEihNSG8sMlNKO1pVNwdeTtYvgYTOrbbRiizytbwknNyroqq4y6PqI2cmda523oo1TZtdlnZd5Yl_tzzkomapKvNwXoOKCy6BSNbbssS8axxag9PKX9_xT6DcaJgk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728458656</pqid></control><display><type>article</type><title>Comparative Study of Carbonaceous and Polymer Conductive Additives on Anticorrosion Performance of Epoxy Zinc-Rich Primer</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Alma/SFX Local Collection</source><creator>Lv, Xiao ; Jin, Xuliang ; Zhang, Zongxuan ; Bai, Yuxing ; Guo, Tingting ; Zhang, Li ; Zhang, Hui ; Zhu, Jesse ; Shao, Yuanyuan ; Zhang, Haiping ; Yuan, Bin ; Yin, Aiming ; Nie, Jinfeng ; Cao, Fan ; Xu, Zhengjun</creator><creatorcontrib>Lv, Xiao ; Jin, Xuliang ; Zhang, Zongxuan ; Bai, Yuxing ; Guo, Tingting ; Zhang, Li ; Zhang, Hui ; Zhu, Jesse ; Shao, Yuanyuan ; Zhang, Haiping ; Yuan, Bin ; Yin, Aiming ; Nie, Jinfeng ; Cao, Fan ; Xu, Zhengjun</creatorcontrib><description>Zinc-rich primers are among the most promising organic coating systems for improving the corrosion resistance of metals in the marine environment. However, the high zinc content results in poor coating adhesion, high cost, insecurity and pollution. To decrease the zinc dust content, the carbonaceous and polymer conductive additives carbon black (CB), conductive graphite (CG), multiwalled carbon nanotubes (MWCNT) and polyaniline (PANI) were introduced to partially replace the zinc dust in the primers. A comparative study of the anticorrosion performance of epoxy zinc-rich primer (ZRP) is presented herein to systematically discuss and elaborate on the effects of the different conductive additives. There were no blisters, rust or corrosion products presented on the coatings of the CB-modified series due to the good dispersion and conductivity of nanosized CB clusters, while the zinc corrosion products covered the surface of the MWCNT-modified series samples, which was attributed to the excessive electrical conductivity resulting in high consumption of zinc powder. The lamellar CG provided an additional blocking barrier for the coatings based on the maze effect. The transition from the intrinsic state to the doped state of PANI resulted in corrosion protection for the coatings depending on the cathodic and barrier function. The experimental results suggested that the formula with 2 wt.% CB and 67 wt.% zinc dust had the most promising anticorrosion properties, which was also demonstrated by the high Rct and low CPEdl values calculated according to the equivalent electrical circuit analyses.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings12101473</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Additives ; Blistering ; Blisters ; Carbon black ; Cathodic coating (process) ; Cathodic protection ; Chemical properties ; Circuits ; Coating processes ; Comparative studies ; Composition ; Conductivity ; Corrosion and anti-corrosives ; Corrosion prevention ; Corrosion products ; Corrosion resistance ; Corrosion tests ; Dust ; Electrical resistivity ; Electrodes ; Epoxy resins ; Glass ; Graphite ; Marine environment ; Morphology ; Multi wall carbon nanotubes ; Organic coatings ; Paints ; Polyanilines ; Polymers ; Prevention ; Primers (Coating) ; Primers (coatings) ; Protective coatings ; Spectrum analysis ; Zinc ; Zinc dust</subject><ispartof>Coatings (Basel), 2022-10, Vol.12 (10), p.1473</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-87691a7c9526aff7df0752c7dbfaa4ad709c59259643c64299ade371210d438f3</citedby><cites>FETCH-LOGICAL-c352t-87691a7c9526aff7df0752c7dbfaa4ad709c59259643c64299ade371210d438f3</cites><orcidid>0000-0001-7749-8917 ; 0000-0003-0998-7035 ; 0000-0003-2434-1259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Lv, Xiao</creatorcontrib><creatorcontrib>Jin, Xuliang</creatorcontrib><creatorcontrib>Zhang, Zongxuan</creatorcontrib><creatorcontrib>Bai, Yuxing</creatorcontrib><creatorcontrib>Guo, Tingting</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Zhu, Jesse</creatorcontrib><creatorcontrib>Shao, Yuanyuan</creatorcontrib><creatorcontrib>Zhang, Haiping</creatorcontrib><creatorcontrib>Yuan, Bin</creatorcontrib><creatorcontrib>Yin, Aiming</creatorcontrib><creatorcontrib>Nie, Jinfeng</creatorcontrib><creatorcontrib>Cao, Fan</creatorcontrib><creatorcontrib>Xu, Zhengjun</creatorcontrib><title>Comparative Study of Carbonaceous and Polymer Conductive Additives on Anticorrosion Performance of Epoxy Zinc-Rich Primer</title><title>Coatings (Basel)</title><description>Zinc-rich primers are among the most promising organic coating systems for improving the corrosion resistance of metals in the marine environment. However, the high zinc content results in poor coating adhesion, high cost, insecurity and pollution. To decrease the zinc dust content, the carbonaceous and polymer conductive additives carbon black (CB), conductive graphite (CG), multiwalled carbon nanotubes (MWCNT) and polyaniline (PANI) were introduced to partially replace the zinc dust in the primers. A comparative study of the anticorrosion performance of epoxy zinc-rich primer (ZRP) is presented herein to systematically discuss and elaborate on the effects of the different conductive additives. There were no blisters, rust or corrosion products presented on the coatings of the CB-modified series due to the good dispersion and conductivity of nanosized CB clusters, while the zinc corrosion products covered the surface of the MWCNT-modified series samples, which was attributed to the excessive electrical conductivity resulting in high consumption of zinc powder. The lamellar CG provided an additional blocking barrier for the coatings based on the maze effect. The transition from the intrinsic state to the doped state of PANI resulted in corrosion protection for the coatings depending on the cathodic and barrier function. The experimental results suggested that the formula with 2 wt.% CB and 67 wt.% zinc dust had the most promising anticorrosion properties, which was also demonstrated by the high Rct and low CPEdl values calculated according to the equivalent electrical circuit analyses.</description><subject>Additives</subject><subject>Blistering</subject><subject>Blisters</subject><subject>Carbon black</subject><subject>Cathodic coating (process)</subject><subject>Cathodic protection</subject><subject>Chemical properties</subject><subject>Circuits</subject><subject>Coating processes</subject><subject>Comparative studies</subject><subject>Composition</subject><subject>Conductivity</subject><subject>Corrosion and anti-corrosives</subject><subject>Corrosion prevention</subject><subject>Corrosion products</subject><subject>Corrosion resistance</subject><subject>Corrosion tests</subject><subject>Dust</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Epoxy resins</subject><subject>Glass</subject><subject>Graphite</subject><subject>Marine environment</subject><subject>Morphology</subject><subject>Multi wall carbon nanotubes</subject><subject>Organic coatings</subject><subject>Paints</subject><subject>Polyanilines</subject><subject>Polymers</subject><subject>Prevention</subject><subject>Primers (Coating)</subject><subject>Primers (coatings)</subject><subject>Protective coatings</subject><subject>Spectrum analysis</subject><subject>Zinc</subject><subject>Zinc dust</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUUtLAzEQDqJgqb17DHhezWs3m2NZ6gMKFh8XL0uaR01pkzXZFfffm1oP4sxhHnzzDd8MAJcYXVMq0I0Ksnd-kzDBCDNOT8CEIC6KimFy-ic_B7OUtiibwLTGYgLGJuw7GfP4p4HP_aBHGCxsZFwHL5UJQ4LSa7gKu3FvImyC14P6Ac-1dockweDh3PdOhRhDcrlamWhD3EuvzIFt0YWvEb45r4onp97hKrrMdQHOrNwlM_uNU_B6u3hp7ovl491DM18WipakL2peCSy5EiWppLVcW8RLorheWymZ1BwJVQpSiopRVTEihNSG8sMlNKO1pVNwdeTtYvgYTOrbbRiizytbwknNyroqq4y6PqI2cmda523oo1TZtdlnZd5Yl_tzzkomapKvNwXoOKCy6BSNbbssS8axxag9PKX9_xT6DcaJgk4</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Lv, Xiao</creator><creator>Jin, Xuliang</creator><creator>Zhang, Zongxuan</creator><creator>Bai, Yuxing</creator><creator>Guo, Tingting</creator><creator>Zhang, Li</creator><creator>Zhang, Hui</creator><creator>Zhu, Jesse</creator><creator>Shao, Yuanyuan</creator><creator>Zhang, Haiping</creator><creator>Yuan, Bin</creator><creator>Yin, Aiming</creator><creator>Nie, Jinfeng</creator><creator>Cao, Fan</creator><creator>Xu, Zhengjun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7749-8917</orcidid><orcidid>https://orcid.org/0000-0003-0998-7035</orcidid><orcidid>https://orcid.org/0000-0003-2434-1259</orcidid></search><sort><creationdate>20221001</creationdate><title>Comparative Study of Carbonaceous and Polymer Conductive Additives on Anticorrosion Performance of Epoxy Zinc-Rich Primer</title><author>Lv, Xiao ; Jin, Xuliang ; Zhang, Zongxuan ; Bai, Yuxing ; Guo, Tingting ; Zhang, Li ; Zhang, Hui ; Zhu, Jesse ; Shao, Yuanyuan ; Zhang, Haiping ; Yuan, Bin ; Yin, Aiming ; Nie, Jinfeng ; Cao, Fan ; Xu, Zhengjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-87691a7c9526aff7df0752c7dbfaa4ad709c59259643c64299ade371210d438f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additives</topic><topic>Blistering</topic><topic>Blisters</topic><topic>Carbon black</topic><topic>Cathodic coating (process)</topic><topic>Cathodic protection</topic><topic>Chemical properties</topic><topic>Circuits</topic><topic>Coating processes</topic><topic>Comparative studies</topic><topic>Composition</topic><topic>Conductivity</topic><topic>Corrosion and anti-corrosives</topic><topic>Corrosion prevention</topic><topic>Corrosion products</topic><topic>Corrosion resistance</topic><topic>Corrosion tests</topic><topic>Dust</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Epoxy resins</topic><topic>Glass</topic><topic>Graphite</topic><topic>Marine environment</topic><topic>Morphology</topic><topic>Multi wall carbon nanotubes</topic><topic>Organic coatings</topic><topic>Paints</topic><topic>Polyanilines</topic><topic>Polymers</topic><topic>Prevention</topic><topic>Primers (Coating)</topic><topic>Primers (coatings)</topic><topic>Protective coatings</topic><topic>Spectrum analysis</topic><topic>Zinc</topic><topic>Zinc dust</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Xiao</creatorcontrib><creatorcontrib>Jin, Xuliang</creatorcontrib><creatorcontrib>Zhang, Zongxuan</creatorcontrib><creatorcontrib>Bai, Yuxing</creatorcontrib><creatorcontrib>Guo, Tingting</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Zhu, Jesse</creatorcontrib><creatorcontrib>Shao, Yuanyuan</creatorcontrib><creatorcontrib>Zhang, Haiping</creatorcontrib><creatorcontrib>Yuan, Bin</creatorcontrib><creatorcontrib>Yin, Aiming</creatorcontrib><creatorcontrib>Nie, Jinfeng</creatorcontrib><creatorcontrib>Cao, Fan</creatorcontrib><creatorcontrib>Xu, Zhengjun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Xiao</au><au>Jin, Xuliang</au><au>Zhang, Zongxuan</au><au>Bai, Yuxing</au><au>Guo, Tingting</au><au>Zhang, Li</au><au>Zhang, Hui</au><au>Zhu, Jesse</au><au>Shao, Yuanyuan</au><au>Zhang, Haiping</au><au>Yuan, Bin</au><au>Yin, Aiming</au><au>Nie, Jinfeng</au><au>Cao, Fan</au><au>Xu, Zhengjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Study of Carbonaceous and Polymer Conductive Additives on Anticorrosion Performance of Epoxy Zinc-Rich Primer</atitle><jtitle>Coatings (Basel)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>12</volume><issue>10</issue><spage>1473</spage><pages>1473-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>Zinc-rich primers are among the most promising organic coating systems for improving the corrosion resistance of metals in the marine environment. However, the high zinc content results in poor coating adhesion, high cost, insecurity and pollution. To decrease the zinc dust content, the carbonaceous and polymer conductive additives carbon black (CB), conductive graphite (CG), multiwalled carbon nanotubes (MWCNT) and polyaniline (PANI) were introduced to partially replace the zinc dust in the primers. A comparative study of the anticorrosion performance of epoxy zinc-rich primer (ZRP) is presented herein to systematically discuss and elaborate on the effects of the different conductive additives. There were no blisters, rust or corrosion products presented on the coatings of the CB-modified series due to the good dispersion and conductivity of nanosized CB clusters, while the zinc corrosion products covered the surface of the MWCNT-modified series samples, which was attributed to the excessive electrical conductivity resulting in high consumption of zinc powder. The lamellar CG provided an additional blocking barrier for the coatings based on the maze effect. The transition from the intrinsic state to the doped state of PANI resulted in corrosion protection for the coatings depending on the cathodic and barrier function. The experimental results suggested that the formula with 2 wt.% CB and 67 wt.% zinc dust had the most promising anticorrosion properties, which was also demonstrated by the high Rct and low CPEdl values calculated according to the equivalent electrical circuit analyses.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings12101473</doi><orcidid>https://orcid.org/0000-0001-7749-8917</orcidid><orcidid>https://orcid.org/0000-0003-0998-7035</orcidid><orcidid>https://orcid.org/0000-0003-2434-1259</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-6412 |
ispartof | Coatings (Basel), 2022-10, Vol.12 (10), p.1473 |
issn | 2079-6412 2079-6412 |
language | eng |
recordid | cdi_proquest_journals_2728458656 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Alma/SFX Local Collection |
subjects | Additives Blistering Blisters Carbon black Cathodic coating (process) Cathodic protection Chemical properties Circuits Coating processes Comparative studies Composition Conductivity Corrosion and anti-corrosives Corrosion prevention Corrosion products Corrosion resistance Corrosion tests Dust Electrical resistivity Electrodes Epoxy resins Glass Graphite Marine environment Morphology Multi wall carbon nanotubes Organic coatings Paints Polyanilines Polymers Prevention Primers (Coating) Primers (coatings) Protective coatings Spectrum analysis Zinc Zinc dust |
title | Comparative Study of Carbonaceous and Polymer Conductive Additives on Anticorrosion Performance of Epoxy Zinc-Rich Primer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A22%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Study%20of%20Carbonaceous%20and%20Polymer%20Conductive%20Additives%20on%20Anticorrosion%20Performance%20of%20Epoxy%20Zinc-Rich%20Primer&rft.jtitle=Coatings%20(Basel)&rft.au=Lv,%20Xiao&rft.date=2022-10-01&rft.volume=12&rft.issue=10&rft.spage=1473&rft.pages=1473-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings12101473&rft_dat=%3Cgale_proqu%3EA745498291%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728458656&rft_id=info:pmid/&rft_galeid=A745498291&rfr_iscdi=true |