Comparative Study of Carbonaceous and Polymer Conductive Additives on Anticorrosion Performance of Epoxy Zinc-Rich Primer

Zinc-rich primers are among the most promising organic coating systems for improving the corrosion resistance of metals in the marine environment. However, the high zinc content results in poor coating adhesion, high cost, insecurity and pollution. To decrease the zinc dust content, the carbonaceous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2022-10, Vol.12 (10), p.1473
Hauptverfasser: Lv, Xiao, Jin, Xuliang, Zhang, Zongxuan, Bai, Yuxing, Guo, Tingting, Zhang, Li, Zhang, Hui, Zhu, Jesse, Shao, Yuanyuan, Zhang, Haiping, Yuan, Bin, Yin, Aiming, Nie, Jinfeng, Cao, Fan, Xu, Zhengjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1473
container_title Coatings (Basel)
container_volume 12
creator Lv, Xiao
Jin, Xuliang
Zhang, Zongxuan
Bai, Yuxing
Guo, Tingting
Zhang, Li
Zhang, Hui
Zhu, Jesse
Shao, Yuanyuan
Zhang, Haiping
Yuan, Bin
Yin, Aiming
Nie, Jinfeng
Cao, Fan
Xu, Zhengjun
description Zinc-rich primers are among the most promising organic coating systems for improving the corrosion resistance of metals in the marine environment. However, the high zinc content results in poor coating adhesion, high cost, insecurity and pollution. To decrease the zinc dust content, the carbonaceous and polymer conductive additives carbon black (CB), conductive graphite (CG), multiwalled carbon nanotubes (MWCNT) and polyaniline (PANI) were introduced to partially replace the zinc dust in the primers. A comparative study of the anticorrosion performance of epoxy zinc-rich primer (ZRP) is presented herein to systematically discuss and elaborate on the effects of the different conductive additives. There were no blisters, rust or corrosion products presented on the coatings of the CB-modified series due to the good dispersion and conductivity of nanosized CB clusters, while the zinc corrosion products covered the surface of the MWCNT-modified series samples, which was attributed to the excessive electrical conductivity resulting in high consumption of zinc powder. The lamellar CG provided an additional blocking barrier for the coatings based on the maze effect. The transition from the intrinsic state to the doped state of PANI resulted in corrosion protection for the coatings depending on the cathodic and barrier function. The experimental results suggested that the formula with 2 wt.% CB and 67 wt.% zinc dust had the most promising anticorrosion properties, which was also demonstrated by the high Rct and low CPEdl values calculated according to the equivalent electrical circuit analyses.
doi_str_mv 10.3390/coatings12101473
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2728458656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745498291</galeid><sourcerecordid>A745498291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-87691a7c9526aff7df0752c7dbfaa4ad709c59259643c64299ade371210d438f3</originalsourceid><addsrcrecordid>eNpdUUtLAzEQDqJgqb17DHhezWs3m2NZ6gMKFh8XL0uaR01pkzXZFfffm1oP4sxhHnzzDd8MAJcYXVMq0I0Ksnd-kzDBCDNOT8CEIC6KimFy-ic_B7OUtiibwLTGYgLGJuw7GfP4p4HP_aBHGCxsZFwHL5UJQ4LSa7gKu3FvImyC14P6Ac-1dockweDh3PdOhRhDcrlamWhD3EuvzIFt0YWvEb45r4onp97hKrrMdQHOrNwlM_uNU_B6u3hp7ovl491DM18WipakL2peCSy5EiWppLVcW8RLorheWymZ1BwJVQpSiopRVTEihNSG8sMlNKO1pVNwdeTtYvgYTOrbbRiizytbwknNyroqq4y6PqI2cmda523oo1TZtdlnZd5Yl_tzzkomapKvNwXoOKCy6BSNbbssS8axxag9PKX9_xT6DcaJgk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728458656</pqid></control><display><type>article</type><title>Comparative Study of Carbonaceous and Polymer Conductive Additives on Anticorrosion Performance of Epoxy Zinc-Rich Primer</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Alma/SFX Local Collection</source><creator>Lv, Xiao ; Jin, Xuliang ; Zhang, Zongxuan ; Bai, Yuxing ; Guo, Tingting ; Zhang, Li ; Zhang, Hui ; Zhu, Jesse ; Shao, Yuanyuan ; Zhang, Haiping ; Yuan, Bin ; Yin, Aiming ; Nie, Jinfeng ; Cao, Fan ; Xu, Zhengjun</creator><creatorcontrib>Lv, Xiao ; Jin, Xuliang ; Zhang, Zongxuan ; Bai, Yuxing ; Guo, Tingting ; Zhang, Li ; Zhang, Hui ; Zhu, Jesse ; Shao, Yuanyuan ; Zhang, Haiping ; Yuan, Bin ; Yin, Aiming ; Nie, Jinfeng ; Cao, Fan ; Xu, Zhengjun</creatorcontrib><description>Zinc-rich primers are among the most promising organic coating systems for improving the corrosion resistance of metals in the marine environment. However, the high zinc content results in poor coating adhesion, high cost, insecurity and pollution. To decrease the zinc dust content, the carbonaceous and polymer conductive additives carbon black (CB), conductive graphite (CG), multiwalled carbon nanotubes (MWCNT) and polyaniline (PANI) were introduced to partially replace the zinc dust in the primers. A comparative study of the anticorrosion performance of epoxy zinc-rich primer (ZRP) is presented herein to systematically discuss and elaborate on the effects of the different conductive additives. There were no blisters, rust or corrosion products presented on the coatings of the CB-modified series due to the good dispersion and conductivity of nanosized CB clusters, while the zinc corrosion products covered the surface of the MWCNT-modified series samples, which was attributed to the excessive electrical conductivity resulting in high consumption of zinc powder. The lamellar CG provided an additional blocking barrier for the coatings based on the maze effect. The transition from the intrinsic state to the doped state of PANI resulted in corrosion protection for the coatings depending on the cathodic and barrier function. The experimental results suggested that the formula with 2 wt.% CB and 67 wt.% zinc dust had the most promising anticorrosion properties, which was also demonstrated by the high Rct and low CPEdl values calculated according to the equivalent electrical circuit analyses.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings12101473</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Additives ; Blistering ; Blisters ; Carbon black ; Cathodic coating (process) ; Cathodic protection ; Chemical properties ; Circuits ; Coating processes ; Comparative studies ; Composition ; Conductivity ; Corrosion and anti-corrosives ; Corrosion prevention ; Corrosion products ; Corrosion resistance ; Corrosion tests ; Dust ; Electrical resistivity ; Electrodes ; Epoxy resins ; Glass ; Graphite ; Marine environment ; Morphology ; Multi wall carbon nanotubes ; Organic coatings ; Paints ; Polyanilines ; Polymers ; Prevention ; Primers (Coating) ; Primers (coatings) ; Protective coatings ; Spectrum analysis ; Zinc ; Zinc dust</subject><ispartof>Coatings (Basel), 2022-10, Vol.12 (10), p.1473</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-87691a7c9526aff7df0752c7dbfaa4ad709c59259643c64299ade371210d438f3</citedby><cites>FETCH-LOGICAL-c352t-87691a7c9526aff7df0752c7dbfaa4ad709c59259643c64299ade371210d438f3</cites><orcidid>0000-0001-7749-8917 ; 0000-0003-0998-7035 ; 0000-0003-2434-1259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Lv, Xiao</creatorcontrib><creatorcontrib>Jin, Xuliang</creatorcontrib><creatorcontrib>Zhang, Zongxuan</creatorcontrib><creatorcontrib>Bai, Yuxing</creatorcontrib><creatorcontrib>Guo, Tingting</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Zhu, Jesse</creatorcontrib><creatorcontrib>Shao, Yuanyuan</creatorcontrib><creatorcontrib>Zhang, Haiping</creatorcontrib><creatorcontrib>Yuan, Bin</creatorcontrib><creatorcontrib>Yin, Aiming</creatorcontrib><creatorcontrib>Nie, Jinfeng</creatorcontrib><creatorcontrib>Cao, Fan</creatorcontrib><creatorcontrib>Xu, Zhengjun</creatorcontrib><title>Comparative Study of Carbonaceous and Polymer Conductive Additives on Anticorrosion Performance of Epoxy Zinc-Rich Primer</title><title>Coatings (Basel)</title><description>Zinc-rich primers are among the most promising organic coating systems for improving the corrosion resistance of metals in the marine environment. However, the high zinc content results in poor coating adhesion, high cost, insecurity and pollution. To decrease the zinc dust content, the carbonaceous and polymer conductive additives carbon black (CB), conductive graphite (CG), multiwalled carbon nanotubes (MWCNT) and polyaniline (PANI) were introduced to partially replace the zinc dust in the primers. A comparative study of the anticorrosion performance of epoxy zinc-rich primer (ZRP) is presented herein to systematically discuss and elaborate on the effects of the different conductive additives. There were no blisters, rust or corrosion products presented on the coatings of the CB-modified series due to the good dispersion and conductivity of nanosized CB clusters, while the zinc corrosion products covered the surface of the MWCNT-modified series samples, which was attributed to the excessive electrical conductivity resulting in high consumption of zinc powder. The lamellar CG provided an additional blocking barrier for the coatings based on the maze effect. The transition from the intrinsic state to the doped state of PANI resulted in corrosion protection for the coatings depending on the cathodic and barrier function. The experimental results suggested that the formula with 2 wt.% CB and 67 wt.% zinc dust had the most promising anticorrosion properties, which was also demonstrated by the high Rct and low CPEdl values calculated according to the equivalent electrical circuit analyses.</description><subject>Additives</subject><subject>Blistering</subject><subject>Blisters</subject><subject>Carbon black</subject><subject>Cathodic coating (process)</subject><subject>Cathodic protection</subject><subject>Chemical properties</subject><subject>Circuits</subject><subject>Coating processes</subject><subject>Comparative studies</subject><subject>Composition</subject><subject>Conductivity</subject><subject>Corrosion and anti-corrosives</subject><subject>Corrosion prevention</subject><subject>Corrosion products</subject><subject>Corrosion resistance</subject><subject>Corrosion tests</subject><subject>Dust</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Epoxy resins</subject><subject>Glass</subject><subject>Graphite</subject><subject>Marine environment</subject><subject>Morphology</subject><subject>Multi wall carbon nanotubes</subject><subject>Organic coatings</subject><subject>Paints</subject><subject>Polyanilines</subject><subject>Polymers</subject><subject>Prevention</subject><subject>Primers (Coating)</subject><subject>Primers (coatings)</subject><subject>Protective coatings</subject><subject>Spectrum analysis</subject><subject>Zinc</subject><subject>Zinc dust</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUUtLAzEQDqJgqb17DHhezWs3m2NZ6gMKFh8XL0uaR01pkzXZFfffm1oP4sxhHnzzDd8MAJcYXVMq0I0Ksnd-kzDBCDNOT8CEIC6KimFy-ic_B7OUtiibwLTGYgLGJuw7GfP4p4HP_aBHGCxsZFwHL5UJQ4LSa7gKu3FvImyC14P6Ac-1dockweDh3PdOhRhDcrlamWhD3EuvzIFt0YWvEb45r4onp97hKrrMdQHOrNwlM_uNU_B6u3hp7ovl491DM18WipakL2peCSy5EiWppLVcW8RLorheWymZ1BwJVQpSiopRVTEihNSG8sMlNKO1pVNwdeTtYvgYTOrbbRiizytbwknNyroqq4y6PqI2cmda523oo1TZtdlnZd5Yl_tzzkomapKvNwXoOKCy6BSNbbssS8axxag9PKX9_xT6DcaJgk4</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Lv, Xiao</creator><creator>Jin, Xuliang</creator><creator>Zhang, Zongxuan</creator><creator>Bai, Yuxing</creator><creator>Guo, Tingting</creator><creator>Zhang, Li</creator><creator>Zhang, Hui</creator><creator>Zhu, Jesse</creator><creator>Shao, Yuanyuan</creator><creator>Zhang, Haiping</creator><creator>Yuan, Bin</creator><creator>Yin, Aiming</creator><creator>Nie, Jinfeng</creator><creator>Cao, Fan</creator><creator>Xu, Zhengjun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7749-8917</orcidid><orcidid>https://orcid.org/0000-0003-0998-7035</orcidid><orcidid>https://orcid.org/0000-0003-2434-1259</orcidid></search><sort><creationdate>20221001</creationdate><title>Comparative Study of Carbonaceous and Polymer Conductive Additives on Anticorrosion Performance of Epoxy Zinc-Rich Primer</title><author>Lv, Xiao ; Jin, Xuliang ; Zhang, Zongxuan ; Bai, Yuxing ; Guo, Tingting ; Zhang, Li ; Zhang, Hui ; Zhu, Jesse ; Shao, Yuanyuan ; Zhang, Haiping ; Yuan, Bin ; Yin, Aiming ; Nie, Jinfeng ; Cao, Fan ; Xu, Zhengjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-87691a7c9526aff7df0752c7dbfaa4ad709c59259643c64299ade371210d438f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additives</topic><topic>Blistering</topic><topic>Blisters</topic><topic>Carbon black</topic><topic>Cathodic coating (process)</topic><topic>Cathodic protection</topic><topic>Chemical properties</topic><topic>Circuits</topic><topic>Coating processes</topic><topic>Comparative studies</topic><topic>Composition</topic><topic>Conductivity</topic><topic>Corrosion and anti-corrosives</topic><topic>Corrosion prevention</topic><topic>Corrosion products</topic><topic>Corrosion resistance</topic><topic>Corrosion tests</topic><topic>Dust</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Epoxy resins</topic><topic>Glass</topic><topic>Graphite</topic><topic>Marine environment</topic><topic>Morphology</topic><topic>Multi wall carbon nanotubes</topic><topic>Organic coatings</topic><topic>Paints</topic><topic>Polyanilines</topic><topic>Polymers</topic><topic>Prevention</topic><topic>Primers (Coating)</topic><topic>Primers (coatings)</topic><topic>Protective coatings</topic><topic>Spectrum analysis</topic><topic>Zinc</topic><topic>Zinc dust</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Xiao</creatorcontrib><creatorcontrib>Jin, Xuliang</creatorcontrib><creatorcontrib>Zhang, Zongxuan</creatorcontrib><creatorcontrib>Bai, Yuxing</creatorcontrib><creatorcontrib>Guo, Tingting</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Zhu, Jesse</creatorcontrib><creatorcontrib>Shao, Yuanyuan</creatorcontrib><creatorcontrib>Zhang, Haiping</creatorcontrib><creatorcontrib>Yuan, Bin</creatorcontrib><creatorcontrib>Yin, Aiming</creatorcontrib><creatorcontrib>Nie, Jinfeng</creatorcontrib><creatorcontrib>Cao, Fan</creatorcontrib><creatorcontrib>Xu, Zhengjun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Xiao</au><au>Jin, Xuliang</au><au>Zhang, Zongxuan</au><au>Bai, Yuxing</au><au>Guo, Tingting</au><au>Zhang, Li</au><au>Zhang, Hui</au><au>Zhu, Jesse</au><au>Shao, Yuanyuan</au><au>Zhang, Haiping</au><au>Yuan, Bin</au><au>Yin, Aiming</au><au>Nie, Jinfeng</au><au>Cao, Fan</au><au>Xu, Zhengjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Study of Carbonaceous and Polymer Conductive Additives on Anticorrosion Performance of Epoxy Zinc-Rich Primer</atitle><jtitle>Coatings (Basel)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>12</volume><issue>10</issue><spage>1473</spage><pages>1473-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>Zinc-rich primers are among the most promising organic coating systems for improving the corrosion resistance of metals in the marine environment. However, the high zinc content results in poor coating adhesion, high cost, insecurity and pollution. To decrease the zinc dust content, the carbonaceous and polymer conductive additives carbon black (CB), conductive graphite (CG), multiwalled carbon nanotubes (MWCNT) and polyaniline (PANI) were introduced to partially replace the zinc dust in the primers. A comparative study of the anticorrosion performance of epoxy zinc-rich primer (ZRP) is presented herein to systematically discuss and elaborate on the effects of the different conductive additives. There were no blisters, rust or corrosion products presented on the coatings of the CB-modified series due to the good dispersion and conductivity of nanosized CB clusters, while the zinc corrosion products covered the surface of the MWCNT-modified series samples, which was attributed to the excessive electrical conductivity resulting in high consumption of zinc powder. The lamellar CG provided an additional blocking barrier for the coatings based on the maze effect. The transition from the intrinsic state to the doped state of PANI resulted in corrosion protection for the coatings depending on the cathodic and barrier function. The experimental results suggested that the formula with 2 wt.% CB and 67 wt.% zinc dust had the most promising anticorrosion properties, which was also demonstrated by the high Rct and low CPEdl values calculated according to the equivalent electrical circuit analyses.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings12101473</doi><orcidid>https://orcid.org/0000-0001-7749-8917</orcidid><orcidid>https://orcid.org/0000-0003-0998-7035</orcidid><orcidid>https://orcid.org/0000-0003-2434-1259</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6412
ispartof Coatings (Basel), 2022-10, Vol.12 (10), p.1473
issn 2079-6412
2079-6412
language eng
recordid cdi_proquest_journals_2728458656
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Alma/SFX Local Collection
subjects Additives
Blistering
Blisters
Carbon black
Cathodic coating (process)
Cathodic protection
Chemical properties
Circuits
Coating processes
Comparative studies
Composition
Conductivity
Corrosion and anti-corrosives
Corrosion prevention
Corrosion products
Corrosion resistance
Corrosion tests
Dust
Electrical resistivity
Electrodes
Epoxy resins
Glass
Graphite
Marine environment
Morphology
Multi wall carbon nanotubes
Organic coatings
Paints
Polyanilines
Polymers
Prevention
Primers (Coating)
Primers (coatings)
Protective coatings
Spectrum analysis
Zinc
Zinc dust
title Comparative Study of Carbonaceous and Polymer Conductive Additives on Anticorrosion Performance of Epoxy Zinc-Rich Primer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A22%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Study%20of%20Carbonaceous%20and%20Polymer%20Conductive%20Additives%20on%20Anticorrosion%20Performance%20of%20Epoxy%20Zinc-Rich%20Primer&rft.jtitle=Coatings%20(Basel)&rft.au=Lv,%20Xiao&rft.date=2022-10-01&rft.volume=12&rft.issue=10&rft.spage=1473&rft.pages=1473-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings12101473&rft_dat=%3Cgale_proqu%3EA745498291%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728458656&rft_id=info:pmid/&rft_galeid=A745498291&rfr_iscdi=true