Melting processes of phase change materials in a horizontally placed rectangular cavity

This paper revisits the melting process of phase change materials (PCMs) enclosed in a horizontally placed rectangular cavity, with isothermal and adiabatic conditions subjected to the vertical and horizontal walls, respectively. First, numerical simulations based on an improved lattice Boltzmann me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2022-11, Vol.950, Article A34
Hauptverfasser: Li, Min, Jiao, Zhenjun, Jia, Pan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 950
creator Li, Min
Jiao, Zhenjun
Jia, Pan
description This paper revisits the melting process of phase change materials (PCMs) enclosed in a horizontally placed rectangular cavity, with isothermal and adiabatic conditions subjected to the vertical and horizontal walls, respectively. First, numerical simulations based on an improved lattice Boltzmann method are conducted to illustrate and to inform the theoretical modelling. It is shown that, compared with the traditional two-stage conduction–convection melting description, it is more reasonable to include a third stage in terms of the heat transfer behaviour. During the third stage, the remnant solid PCM is located in the corner formed by the cold and bottom walls of the cavity, and an increasing part of the input energy will be transferred directly out of the cavity without compensating for the melting latent heat, thus inducing a continuously decreasing melting rate until the end of the melting process. Then theoretical predictions are derived piecewise for the melted liquid fraction during the entire melting process, and the corresponding transitions between two successive stages are also discussed. The results are validated successfully via the available experimental and numerical data in the literature, and could guide the design and operation of latent heat storage systems.
doi_str_mv 10.1017/jfm.2022.751
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2728434406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2022_751</cupid><sourcerecordid>2728434406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-64552392462908dcb10ae71db3e92064b83b01b0e46e0c29c1a7679089bfd7503</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs3f0DAq7tOPnbTPUrxCypeFI8hyc62W_bLZFeov96UFrx4Ghie953hIeSaQcqAqbtt1aYcOE9Vxk7IjMm8SFQus1Myg7hOGONwTi5C2AIwAYWakc9XbMa6W9PB9w5DwED7ig4bE5C6jenWSFszoq9NE2jdUUM3va9_-m40TbOjQ2McltSjGyM7NcZTZ77rcXdJzqoYwavjnJOPx4f35XOyent6Wd6vEieAj0l8LuOi4DLnBSxKZxkYVKy0AgsOubQLYYFZQJkjOF44ZlSuIlrYqlQZiDm5OfTG_78mDKPe9pPv4knNFV9IISXkkbo9UM73IXis9ODr1vidZqD36nRUp_fqdFQX8fSIm9b6ulzjX-u_gV9-qHBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728434406</pqid></control><display><type>article</type><title>Melting processes of phase change materials in a horizontally placed rectangular cavity</title><source>Cambridge University Press Journals Complete</source><creator>Li, Min ; Jiao, Zhenjun ; Jia, Pan</creator><creatorcontrib>Li, Min ; Jiao, Zhenjun ; Jia, Pan</creatorcontrib><description>This paper revisits the melting process of phase change materials (PCMs) enclosed in a horizontally placed rectangular cavity, with isothermal and adiabatic conditions subjected to the vertical and horizontal walls, respectively. First, numerical simulations based on an improved lattice Boltzmann method are conducted to illustrate and to inform the theoretical modelling. It is shown that, compared with the traditional two-stage conduction–convection melting description, it is more reasonable to include a third stage in terms of the heat transfer behaviour. During the third stage, the remnant solid PCM is located in the corner formed by the cold and bottom walls of the cavity, and an increasing part of the input energy will be transferred directly out of the cavity without compensating for the melting latent heat, thus inducing a continuously decreasing melting rate until the end of the melting process. Then theoretical predictions are derived piecewise for the melted liquid fraction during the entire melting process, and the corresponding transitions between two successive stages are also discussed. The results are validated successfully via the available experimental and numerical data in the literature, and could guide the design and operation of latent heat storage systems.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2022.751</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Adiabatic ; Adiabatic conditions ; Boundary conditions ; Convection ; Energy storage ; Heat ; Heat storage ; Heat transfer ; JFM Papers ; Latent heat ; Mathematical models ; Melting ; Morphology ; Phase change materials ; Polyethylene glycol ; Rayleigh number ; Storage systems ; Thermal energy</subject><ispartof>Journal of fluid mechanics, 2022-11, Vol.950, Article A34</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-64552392462908dcb10ae71db3e92064b83b01b0e46e0c29c1a7679089bfd7503</citedby><cites>FETCH-LOGICAL-c302t-64552392462908dcb10ae71db3e92064b83b01b0e46e0c29c1a7679089bfd7503</cites><orcidid>0000-0002-3988-4363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112022007510/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Jiao, Zhenjun</creatorcontrib><creatorcontrib>Jia, Pan</creatorcontrib><title>Melting processes of phase change materials in a horizontally placed rectangular cavity</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>This paper revisits the melting process of phase change materials (PCMs) enclosed in a horizontally placed rectangular cavity, with isothermal and adiabatic conditions subjected to the vertical and horizontal walls, respectively. First, numerical simulations based on an improved lattice Boltzmann method are conducted to illustrate and to inform the theoretical modelling. It is shown that, compared with the traditional two-stage conduction–convection melting description, it is more reasonable to include a third stage in terms of the heat transfer behaviour. During the third stage, the remnant solid PCM is located in the corner formed by the cold and bottom walls of the cavity, and an increasing part of the input energy will be transferred directly out of the cavity without compensating for the melting latent heat, thus inducing a continuously decreasing melting rate until the end of the melting process. Then theoretical predictions are derived piecewise for the melted liquid fraction during the entire melting process, and the corresponding transitions between two successive stages are also discussed. The results are validated successfully via the available experimental and numerical data in the literature, and could guide the design and operation of latent heat storage systems.</description><subject>Adiabatic</subject><subject>Adiabatic conditions</subject><subject>Boundary conditions</subject><subject>Convection</subject><subject>Energy storage</subject><subject>Heat</subject><subject>Heat storage</subject><subject>Heat transfer</subject><subject>JFM Papers</subject><subject>Latent heat</subject><subject>Mathematical models</subject><subject>Melting</subject><subject>Morphology</subject><subject>Phase change materials</subject><subject>Polyethylene glycol</subject><subject>Rayleigh number</subject><subject>Storage systems</subject><subject>Thermal energy</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LAzEQhoMoWKs3f0DAq7tOPnbTPUrxCypeFI8hyc62W_bLZFeov96UFrx4Ghie953hIeSaQcqAqbtt1aYcOE9Vxk7IjMm8SFQus1Myg7hOGONwTi5C2AIwAYWakc9XbMa6W9PB9w5DwED7ig4bE5C6jenWSFszoq9NE2jdUUM3va9_-m40TbOjQ2McltSjGyM7NcZTZ77rcXdJzqoYwavjnJOPx4f35XOyent6Wd6vEieAj0l8LuOi4DLnBSxKZxkYVKy0AgsOubQLYYFZQJkjOF44ZlSuIlrYqlQZiDm5OfTG_78mDKPe9pPv4knNFV9IISXkkbo9UM73IXis9ODr1vidZqD36nRUp_fqdFQX8fSIm9b6ulzjX-u_gV9-qHBQ</recordid><startdate>20221110</startdate><enddate>20221110</enddate><creator>Li, Min</creator><creator>Jiao, Zhenjun</creator><creator>Jia, Pan</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-3988-4363</orcidid></search><sort><creationdate>20221110</creationdate><title>Melting processes of phase change materials in a horizontally placed rectangular cavity</title><author>Li, Min ; Jiao, Zhenjun ; Jia, Pan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-64552392462908dcb10ae71db3e92064b83b01b0e46e0c29c1a7679089bfd7503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adiabatic</topic><topic>Adiabatic conditions</topic><topic>Boundary conditions</topic><topic>Convection</topic><topic>Energy storage</topic><topic>Heat</topic><topic>Heat storage</topic><topic>Heat transfer</topic><topic>JFM Papers</topic><topic>Latent heat</topic><topic>Mathematical models</topic><topic>Melting</topic><topic>Morphology</topic><topic>Phase change materials</topic><topic>Polyethylene glycol</topic><topic>Rayleigh number</topic><topic>Storage systems</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Jiao, Zhenjun</creatorcontrib><creatorcontrib>Jia, Pan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Min</au><au>Jiao, Zhenjun</au><au>Jia, Pan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melting processes of phase change materials in a horizontally placed rectangular cavity</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2022-11-10</date><risdate>2022</risdate><volume>950</volume><artnum>A34</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>This paper revisits the melting process of phase change materials (PCMs) enclosed in a horizontally placed rectangular cavity, with isothermal and adiabatic conditions subjected to the vertical and horizontal walls, respectively. First, numerical simulations based on an improved lattice Boltzmann method are conducted to illustrate and to inform the theoretical modelling. It is shown that, compared with the traditional two-stage conduction–convection melting description, it is more reasonable to include a third stage in terms of the heat transfer behaviour. During the third stage, the remnant solid PCM is located in the corner formed by the cold and bottom walls of the cavity, and an increasing part of the input energy will be transferred directly out of the cavity without compensating for the melting latent heat, thus inducing a continuously decreasing melting rate until the end of the melting process. Then theoretical predictions are derived piecewise for the melted liquid fraction during the entire melting process, and the corresponding transitions between two successive stages are also discussed. The results are validated successfully via the available experimental and numerical data in the literature, and could guide the design and operation of latent heat storage systems.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2022.751</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-3988-4363</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2022-11, Vol.950, Article A34
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2728434406
source Cambridge University Press Journals Complete
subjects Adiabatic
Adiabatic conditions
Boundary conditions
Convection
Energy storage
Heat
Heat storage
Heat transfer
JFM Papers
Latent heat
Mathematical models
Melting
Morphology
Phase change materials
Polyethylene glycol
Rayleigh number
Storage systems
Thermal energy
title Melting processes of phase change materials in a horizontally placed rectangular cavity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melting%20processes%20of%20phase%20change%20materials%20in%20a%20horizontally%20placed%20rectangular%20cavity&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Li,%20Min&rft.date=2022-11-10&rft.volume=950&rft.artnum=A34&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2022.751&rft_dat=%3Cproquest_cross%3E2728434406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728434406&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2022_751&rfr_iscdi=true