A generalized two‐factor square‐root framework for modeling occurrences of natural catastrophes

This work aims to forecast (over 1, 5, and 15 years) the extremes, the expected value, and the volatility of natural disasters occurrences. To achieve this objective, we adopt a generalized two‐factor square‐root model linking together occurrences and volatility through stochastic correlation (Brown...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forecasting 2022-12, Vol.41 (8), p.1608-1622
Hauptverfasser: Orlando, Giuseppe, Bufalo, Michele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1622
container_issue 8
container_start_page 1608
container_title Journal of forecasting
container_volume 41
creator Orlando, Giuseppe
Bufalo, Michele
description This work aims to forecast (over 1, 5, and 15 years) the extremes, the expected value, and the volatility of natural disasters occurrences. To achieve this objective, we adopt a generalized two‐factor square‐root model linking together occurrences and volatility through stochastic correlation (Brownian motion). We use a generalized Pareto distribution (GPD) to forecast the maximum number of occurrences as a measure of value at risk (VaR). The results are checked in terms of accuracy, compared versus some baseline models (i.e., the Poisson process and the extreme value model) and backtested.
doi_str_mv 10.1002/for.2880
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2728411403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728411403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3850-f1552434647b54f537435b8d338522e5b4e62457cc8451066760f996410d9b7a3</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMoWKvgIwTcuJma30lmWYpVoVAQBXchk0nq1HbSJjOUuvIRfEafxNQRXLm6XO7hfNwPgEuMRhghcuN8GBEp0REYYFQUGab45RgMEBEiy_OCnoKzGJcIISExGQAzhgvb2KBX9butYLvzXx-fTpvWBxi3nQ427cH7Frqg13bnwxtMEXDtK7uqmwX0xnQh2MbYCL2DjW67JINGtzq2wW9ebTwHJ06vor34nUPwPL19mtxns_ndw2Q8ywyVHGUOc04YZTkTJWeOU8EoL2VF05UQy0tmc8K4MEYyjlGeixy5osgZRlVRCk2H4Kr3boLfdja2aum70KRIRQSRDGOGaKKue8oEH2OwTm1CvdZhrzBShwpV-k8dKkwo7FFrfFPHP1ASwSUt2AHJemRXr-z-X5Wazh9_lN9-0H5O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728411403</pqid></control><display><type>article</type><title>A generalized two‐factor square‐root framework for modeling occurrences of natural catastrophes</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Orlando, Giuseppe ; Bufalo, Michele</creator><creatorcontrib>Orlando, Giuseppe ; Bufalo, Michele</creatorcontrib><description>This work aims to forecast (over 1, 5, and 15 years) the extremes, the expected value, and the volatility of natural disasters occurrences. To achieve this objective, we adopt a generalized two‐factor square‐root model linking together occurrences and volatility through stochastic correlation (Brownian motion). We use a generalized Pareto distribution (GPD) to forecast the maximum number of occurrences as a measure of value at risk (VaR). The results are checked in terms of accuracy, compared versus some baseline models (i.e., the Poisson process and the extreme value model) and backtested.</description><identifier>ISSN: 0277-6693</identifier><identifier>EISSN: 1099-131X</identifier><identifier>DOI: 10.1002/for.2880</identifier><language>eng</language><publisher>Chichester: Wiley Periodicals Inc</publisher><subject>Extremes ; forecasting ; model evaluation ; natural catastrophes ; Natural disasters ; selection ; validation</subject><ispartof>Journal of forecasting, 2022-12, Vol.41 (8), p.1608-1622</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3850-f1552434647b54f537435b8d338522e5b4e62457cc8451066760f996410d9b7a3</citedby><cites>FETCH-LOGICAL-c3850-f1552434647b54f537435b8d338522e5b4e62457cc8451066760f996410d9b7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffor.2880$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffor.2880$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Orlando, Giuseppe</creatorcontrib><creatorcontrib>Bufalo, Michele</creatorcontrib><title>A generalized two‐factor square‐root framework for modeling occurrences of natural catastrophes</title><title>Journal of forecasting</title><description>This work aims to forecast (over 1, 5, and 15 years) the extremes, the expected value, and the volatility of natural disasters occurrences. To achieve this objective, we adopt a generalized two‐factor square‐root model linking together occurrences and volatility through stochastic correlation (Brownian motion). We use a generalized Pareto distribution (GPD) to forecast the maximum number of occurrences as a measure of value at risk (VaR). The results are checked in terms of accuracy, compared versus some baseline models (i.e., the Poisson process and the extreme value model) and backtested.</description><subject>Extremes</subject><subject>forecasting</subject><subject>model evaluation</subject><subject>natural catastrophes</subject><subject>Natural disasters</subject><subject>selection</subject><subject>validation</subject><issn>0277-6693</issn><issn>1099-131X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kM1KAzEURoMoWKvgIwTcuJma30lmWYpVoVAQBXchk0nq1HbSJjOUuvIRfEafxNQRXLm6XO7hfNwPgEuMRhghcuN8GBEp0REYYFQUGab45RgMEBEiy_OCnoKzGJcIISExGQAzhgvb2KBX9butYLvzXx-fTpvWBxi3nQ427cH7Frqg13bnwxtMEXDtK7uqmwX0xnQh2MbYCL2DjW67JINGtzq2wW9ebTwHJ06vor34nUPwPL19mtxns_ndw2Q8ywyVHGUOc04YZTkTJWeOU8EoL2VF05UQy0tmc8K4MEYyjlGeixy5osgZRlVRCk2H4Kr3boLfdja2aum70KRIRQSRDGOGaKKue8oEH2OwTm1CvdZhrzBShwpV-k8dKkwo7FFrfFPHP1ASwSUt2AHJemRXr-z-X5Wazh9_lN9-0H5O</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Orlando, Giuseppe</creator><creator>Bufalo, Michele</creator><general>Wiley Periodicals Inc</general><scope>24P</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>202212</creationdate><title>A generalized two‐factor square‐root framework for modeling occurrences of natural catastrophes</title><author>Orlando, Giuseppe ; Bufalo, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3850-f1552434647b54f537435b8d338522e5b4e62457cc8451066760f996410d9b7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Extremes</topic><topic>forecasting</topic><topic>model evaluation</topic><topic>natural catastrophes</topic><topic>Natural disasters</topic><topic>selection</topic><topic>validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orlando, Giuseppe</creatorcontrib><creatorcontrib>Bufalo, Michele</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orlando, Giuseppe</au><au>Bufalo, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalized two‐factor square‐root framework for modeling occurrences of natural catastrophes</atitle><jtitle>Journal of forecasting</jtitle><date>2022-12</date><risdate>2022</risdate><volume>41</volume><issue>8</issue><spage>1608</spage><epage>1622</epage><pages>1608-1622</pages><issn>0277-6693</issn><eissn>1099-131X</eissn><abstract>This work aims to forecast (over 1, 5, and 15 years) the extremes, the expected value, and the volatility of natural disasters occurrences. To achieve this objective, we adopt a generalized two‐factor square‐root model linking together occurrences and volatility through stochastic correlation (Brownian motion). We use a generalized Pareto distribution (GPD) to forecast the maximum number of occurrences as a measure of value at risk (VaR). The results are checked in terms of accuracy, compared versus some baseline models (i.e., the Poisson process and the extreme value model) and backtested.</abstract><cop>Chichester</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/for.2880</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6693
ispartof Journal of forecasting, 2022-12, Vol.41 (8), p.1608-1622
issn 0277-6693
1099-131X
language eng
recordid cdi_proquest_journals_2728411403
source Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete
subjects Extremes
forecasting
model evaluation
natural catastrophes
Natural disasters
selection
validation
title A generalized two‐factor square‐root framework for modeling occurrences of natural catastrophes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalized%20two%E2%80%90factor%20square%E2%80%90root%20framework%20for%20modeling%20occurrences%20of%20natural%20catastrophes&rft.jtitle=Journal%20of%20forecasting&rft.au=Orlando,%20Giuseppe&rft.date=2022-12&rft.volume=41&rft.issue=8&rft.spage=1608&rft.epage=1622&rft.pages=1608-1622&rft.issn=0277-6693&rft.eissn=1099-131X&rft_id=info:doi/10.1002/for.2880&rft_dat=%3Cproquest_cross%3E2728411403%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728411403&rft_id=info:pmid/&rfr_iscdi=true