A generalized two‐factor square‐root framework for modeling occurrences of natural catastrophes
This work aims to forecast (over 1, 5, and 15 years) the extremes, the expected value, and the volatility of natural disasters occurrences. To achieve this objective, we adopt a generalized two‐factor square‐root model linking together occurrences and volatility through stochastic correlation (Brown...
Gespeichert in:
Veröffentlicht in: | Journal of forecasting 2022-12, Vol.41 (8), p.1608-1622 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1622 |
---|---|
container_issue | 8 |
container_start_page | 1608 |
container_title | Journal of forecasting |
container_volume | 41 |
creator | Orlando, Giuseppe Bufalo, Michele |
description | This work aims to forecast (over 1, 5, and 15 years) the extremes, the expected value, and the volatility of natural disasters occurrences. To achieve this objective, we adopt a generalized two‐factor square‐root model linking together occurrences and volatility through stochastic correlation (Brownian motion). We use a generalized Pareto distribution (GPD) to forecast the maximum number of occurrences as a measure of value at risk (VaR). The results are checked in terms of accuracy, compared versus some baseline models (i.e., the Poisson process and the extreme value model) and backtested. |
doi_str_mv | 10.1002/for.2880 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2728411403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728411403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3850-f1552434647b54f537435b8d338522e5b4e62457cc8451066760f996410d9b7a3</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMoWKvgIwTcuJma30lmWYpVoVAQBXchk0nq1HbSJjOUuvIRfEafxNQRXLm6XO7hfNwPgEuMRhghcuN8GBEp0REYYFQUGab45RgMEBEiy_OCnoKzGJcIISExGQAzhgvb2KBX9butYLvzXx-fTpvWBxi3nQ427cH7Frqg13bnwxtMEXDtK7uqmwX0xnQh2MbYCL2DjW67JINGtzq2wW9ebTwHJ06vor34nUPwPL19mtxns_ndw2Q8ywyVHGUOc04YZTkTJWeOU8EoL2VF05UQy0tmc8K4MEYyjlGeixy5osgZRlVRCk2H4Kr3boLfdja2aum70KRIRQSRDGOGaKKue8oEH2OwTm1CvdZhrzBShwpV-k8dKkwo7FFrfFPHP1ASwSUt2AHJemRXr-z-X5Wazh9_lN9-0H5O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728411403</pqid></control><display><type>article</type><title>A generalized two‐factor square‐root framework for modeling occurrences of natural catastrophes</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Orlando, Giuseppe ; Bufalo, Michele</creator><creatorcontrib>Orlando, Giuseppe ; Bufalo, Michele</creatorcontrib><description>This work aims to forecast (over 1, 5, and 15 years) the extremes, the expected value, and the volatility of natural disasters occurrences. To achieve this objective, we adopt a generalized two‐factor square‐root model linking together occurrences and volatility through stochastic correlation (Brownian motion). We use a generalized Pareto distribution (GPD) to forecast the maximum number of occurrences as a measure of value at risk (VaR). The results are checked in terms of accuracy, compared versus some baseline models (i.e., the Poisson process and the extreme value model) and backtested.</description><identifier>ISSN: 0277-6693</identifier><identifier>EISSN: 1099-131X</identifier><identifier>DOI: 10.1002/for.2880</identifier><language>eng</language><publisher>Chichester: Wiley Periodicals Inc</publisher><subject>Extremes ; forecasting ; model evaluation ; natural catastrophes ; Natural disasters ; selection ; validation</subject><ispartof>Journal of forecasting, 2022-12, Vol.41 (8), p.1608-1622</ispartof><rights>2022 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3850-f1552434647b54f537435b8d338522e5b4e62457cc8451066760f996410d9b7a3</citedby><cites>FETCH-LOGICAL-c3850-f1552434647b54f537435b8d338522e5b4e62457cc8451066760f996410d9b7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffor.2880$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffor.2880$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Orlando, Giuseppe</creatorcontrib><creatorcontrib>Bufalo, Michele</creatorcontrib><title>A generalized two‐factor square‐root framework for modeling occurrences of natural catastrophes</title><title>Journal of forecasting</title><description>This work aims to forecast (over 1, 5, and 15 years) the extremes, the expected value, and the volatility of natural disasters occurrences. To achieve this objective, we adopt a generalized two‐factor square‐root model linking together occurrences and volatility through stochastic correlation (Brownian motion). We use a generalized Pareto distribution (GPD) to forecast the maximum number of occurrences as a measure of value at risk (VaR). The results are checked in terms of accuracy, compared versus some baseline models (i.e., the Poisson process and the extreme value model) and backtested.</description><subject>Extremes</subject><subject>forecasting</subject><subject>model evaluation</subject><subject>natural catastrophes</subject><subject>Natural disasters</subject><subject>selection</subject><subject>validation</subject><issn>0277-6693</issn><issn>1099-131X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kM1KAzEURoMoWKvgIwTcuJma30lmWYpVoVAQBXchk0nq1HbSJjOUuvIRfEafxNQRXLm6XO7hfNwPgEuMRhghcuN8GBEp0REYYFQUGab45RgMEBEiy_OCnoKzGJcIISExGQAzhgvb2KBX9butYLvzXx-fTpvWBxi3nQ427cH7Frqg13bnwxtMEXDtK7uqmwX0xnQh2MbYCL2DjW67JINGtzq2wW9ebTwHJ06vor34nUPwPL19mtxns_ndw2Q8ywyVHGUOc04YZTkTJWeOU8EoL2VF05UQy0tmc8K4MEYyjlGeixy5osgZRlVRCk2H4Kr3boLfdja2aum70KRIRQSRDGOGaKKue8oEH2OwTm1CvdZhrzBShwpV-k8dKkwo7FFrfFPHP1ASwSUt2AHJemRXr-z-X5Wazh9_lN9-0H5O</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Orlando, Giuseppe</creator><creator>Bufalo, Michele</creator><general>Wiley Periodicals Inc</general><scope>24P</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>202212</creationdate><title>A generalized two‐factor square‐root framework for modeling occurrences of natural catastrophes</title><author>Orlando, Giuseppe ; Bufalo, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3850-f1552434647b54f537435b8d338522e5b4e62457cc8451066760f996410d9b7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Extremes</topic><topic>forecasting</topic><topic>model evaluation</topic><topic>natural catastrophes</topic><topic>Natural disasters</topic><topic>selection</topic><topic>validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orlando, Giuseppe</creatorcontrib><creatorcontrib>Bufalo, Michele</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orlando, Giuseppe</au><au>Bufalo, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalized two‐factor square‐root framework for modeling occurrences of natural catastrophes</atitle><jtitle>Journal of forecasting</jtitle><date>2022-12</date><risdate>2022</risdate><volume>41</volume><issue>8</issue><spage>1608</spage><epage>1622</epage><pages>1608-1622</pages><issn>0277-6693</issn><eissn>1099-131X</eissn><abstract>This work aims to forecast (over 1, 5, and 15 years) the extremes, the expected value, and the volatility of natural disasters occurrences. To achieve this objective, we adopt a generalized two‐factor square‐root model linking together occurrences and volatility through stochastic correlation (Brownian motion). We use a generalized Pareto distribution (GPD) to forecast the maximum number of occurrences as a measure of value at risk (VaR). The results are checked in terms of accuracy, compared versus some baseline models (i.e., the Poisson process and the extreme value model) and backtested.</abstract><cop>Chichester</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/for.2880</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6693 |
ispartof | Journal of forecasting, 2022-12, Vol.41 (8), p.1608-1622 |
issn | 0277-6693 1099-131X |
language | eng |
recordid | cdi_proquest_journals_2728411403 |
source | Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete |
subjects | Extremes forecasting model evaluation natural catastrophes Natural disasters selection validation |
title | A generalized two‐factor square‐root framework for modeling occurrences of natural catastrophes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalized%20two%E2%80%90factor%20square%E2%80%90root%20framework%20for%20modeling%20occurrences%20of%20natural%20catastrophes&rft.jtitle=Journal%20of%20forecasting&rft.au=Orlando,%20Giuseppe&rft.date=2022-12&rft.volume=41&rft.issue=8&rft.spage=1608&rft.epage=1622&rft.pages=1608-1622&rft.issn=0277-6693&rft.eissn=1099-131X&rft_id=info:doi/10.1002/for.2880&rft_dat=%3Cproquest_cross%3E2728411403%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728411403&rft_id=info:pmid/&rfr_iscdi=true |