Dynamic voltage scaling based energy-minimized partial task offloading in fog networks
With the dynamic voltage scaling (DVS) technology, the terminal node (TN) can dynamically adjust its computational speed, thus providing a new way to save energy during task offloading in fog computing. Focusing on the scenario of one TN and multiple fog nodes (FNs), this paper proposed an Energy-Mi...
Gespeichert in:
Veröffentlicht in: | Wireless networks 2022-11, Vol.28 (8), p.3337-3347 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3347 |
---|---|
container_issue | 8 |
container_start_page | 3337 |
container_title | Wireless networks |
container_volume | 28 |
creator | Qin, Yuancheng Yao, Yingbiao Feng, Wei Li, Pei Xu, Xin |
description | With the dynamic voltage scaling (DVS) technology, the terminal node (TN) can dynamically adjust its computational speed, thus providing a new way to save energy during task offloading in fog computing. Focusing on the scenario of one TN and multiple fog nodes (FNs), this paper proposed an Energy-Minimized Partial Task Offloading (EMPTO) scheme for the first time to reduce the overall energy consumption based on DVS technology. Firstly, by modeling the energy consumption and processing delay of task offloading, we formulated the problem of minimizing energy consumption. Then, using the variable substitution method, we transformed this energy minimization problem into a univariate optimization problem about the TN’s computational speed. By solving this problem, EMPTO gets the optimal TN’s computational speed, task offloading size between each pair of TN and FN, and the overall energy consumption. Finally, EMPTO selects the offloading scheme with the lowest overall energy consumption as the final scheme. Theoretical proof and simulation results show that EMPTO can achieve the minimum energy consumption by DVS technology under delay constraint. |
doi_str_mv | 10.1007/s11276-022-03052-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2728320983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728320983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-f178e2fd9f1e240f001de06d24d9eacc5af3baeaa41d4534ae0084afeb32c7323</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwBThV4hxwknZtj2j8lSZxAa6R1zpVtjYZSQcan55uReLGyZb93rP1Y-xSwLUAyG-iEDKfcZCSg4JMcnXEJiLLJS9EOTse-sMKVHHKzmJcAUChynLC3u92DjtbJZ--7bGhJFbYWtckS4xUJ-QoNDveWWc7-z0MNhh6i23SY1wn3pjWY72XW5cY3ySO-i8f1vGcnRhsI1381il7e7h_nT_xxcvj8_x2wSuZQ8-NyAuSpi6NIJmCARA1wayWaV0SVlWGRi2REFNRp5lKkYa_UzS0VLLKlVRTdjXmboL_2FLs9cpvgxtOapnLQkkoCzWo5Kiqgo8xkNGbYDsMOy1A7_npkZ8eIOkDP703qdEUB7FrKPxF_-P6AVfQdG0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728320983</pqid></control><display><type>article</type><title>Dynamic voltage scaling based energy-minimized partial task offloading in fog networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Qin, Yuancheng ; Yao, Yingbiao ; Feng, Wei ; Li, Pei ; Xu, Xin</creator><creatorcontrib>Qin, Yuancheng ; Yao, Yingbiao ; Feng, Wei ; Li, Pei ; Xu, Xin</creatorcontrib><description>With the dynamic voltage scaling (DVS) technology, the terminal node (TN) can dynamically adjust its computational speed, thus providing a new way to save energy during task offloading in fog computing. Focusing on the scenario of one TN and multiple fog nodes (FNs), this paper proposed an Energy-Minimized Partial Task Offloading (EMPTO) scheme for the first time to reduce the overall energy consumption based on DVS technology. Firstly, by modeling the energy consumption and processing delay of task offloading, we formulated the problem of minimizing energy consumption. Then, using the variable substitution method, we transformed this energy minimization problem into a univariate optimization problem about the TN’s computational speed. By solving this problem, EMPTO gets the optimal TN’s computational speed, task offloading size between each pair of TN and FN, and the overall energy consumption. Finally, EMPTO selects the offloading scheme with the lowest overall energy consumption as the final scheme. Theoretical proof and simulation results show that EMPTO can achieve the minimum energy consumption by DVS technology under delay constraint.</description><identifier>ISSN: 1022-0038</identifier><identifier>EISSN: 1572-8196</identifier><identifier>DOI: 10.1007/s11276-022-03052-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cloud computing ; Communications Engineering ; Computation offloading ; Computer Communication Networks ; Electric potential ; Electrical Engineering ; Energy consumption ; Engineering ; IT in Business ; Networks ; Optimization ; Original Paper ; Voltage ; Wireless networks</subject><ispartof>Wireless networks, 2022-11, Vol.28 (8), p.3337-3347</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-f178e2fd9f1e240f001de06d24d9eacc5af3baeaa41d4534ae0084afeb32c7323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11276-022-03052-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11276-022-03052-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Qin, Yuancheng</creatorcontrib><creatorcontrib>Yao, Yingbiao</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Li, Pei</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><title>Dynamic voltage scaling based energy-minimized partial task offloading in fog networks</title><title>Wireless networks</title><addtitle>Wireless Netw</addtitle><description>With the dynamic voltage scaling (DVS) technology, the terminal node (TN) can dynamically adjust its computational speed, thus providing a new way to save energy during task offloading in fog computing. Focusing on the scenario of one TN and multiple fog nodes (FNs), this paper proposed an Energy-Minimized Partial Task Offloading (EMPTO) scheme for the first time to reduce the overall energy consumption based on DVS technology. Firstly, by modeling the energy consumption and processing delay of task offloading, we formulated the problem of minimizing energy consumption. Then, using the variable substitution method, we transformed this energy minimization problem into a univariate optimization problem about the TN’s computational speed. By solving this problem, EMPTO gets the optimal TN’s computational speed, task offloading size between each pair of TN and FN, and the overall energy consumption. Finally, EMPTO selects the offloading scheme with the lowest overall energy consumption as the final scheme. Theoretical proof and simulation results show that EMPTO can achieve the minimum energy consumption by DVS technology under delay constraint.</description><subject>Cloud computing</subject><subject>Communications Engineering</subject><subject>Computation offloading</subject><subject>Computer Communication Networks</subject><subject>Electric potential</subject><subject>Electrical Engineering</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>IT in Business</subject><subject>Networks</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Voltage</subject><subject>Wireless networks</subject><issn>1022-0038</issn><issn>1572-8196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9PwzAMxSMEEmPwBThV4hxwknZtj2j8lSZxAa6R1zpVtjYZSQcan55uReLGyZb93rP1Y-xSwLUAyG-iEDKfcZCSg4JMcnXEJiLLJS9EOTse-sMKVHHKzmJcAUChynLC3u92DjtbJZ--7bGhJFbYWtckS4xUJ-QoNDveWWc7-z0MNhh6i23SY1wn3pjWY72XW5cY3ySO-i8f1vGcnRhsI1381il7e7h_nT_xxcvj8_x2wSuZQ8-NyAuSpi6NIJmCARA1wayWaV0SVlWGRi2REFNRp5lKkYa_UzS0VLLKlVRTdjXmboL_2FLs9cpvgxtOapnLQkkoCzWo5Kiqgo8xkNGbYDsMOy1A7_npkZ8eIOkDP703qdEUB7FrKPxF_-P6AVfQdG0</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Qin, Yuancheng</creator><creator>Yao, Yingbiao</creator><creator>Feng, Wei</creator><creator>Li, Pei</creator><creator>Xu, Xin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20221101</creationdate><title>Dynamic voltage scaling based energy-minimized partial task offloading in fog networks</title><author>Qin, Yuancheng ; Yao, Yingbiao ; Feng, Wei ; Li, Pei ; Xu, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-f178e2fd9f1e240f001de06d24d9eacc5af3baeaa41d4534ae0084afeb32c7323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cloud computing</topic><topic>Communications Engineering</topic><topic>Computation offloading</topic><topic>Computer Communication Networks</topic><topic>Electric potential</topic><topic>Electrical Engineering</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>IT in Business</topic><topic>Networks</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Voltage</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Yuancheng</creatorcontrib><creatorcontrib>Yao, Yingbiao</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Li, Pei</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Yuancheng</au><au>Yao, Yingbiao</au><au>Feng, Wei</au><au>Li, Pei</au><au>Xu, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic voltage scaling based energy-minimized partial task offloading in fog networks</atitle><jtitle>Wireless networks</jtitle><stitle>Wireless Netw</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>28</volume><issue>8</issue><spage>3337</spage><epage>3347</epage><pages>3337-3347</pages><issn>1022-0038</issn><eissn>1572-8196</eissn><abstract>With the dynamic voltage scaling (DVS) technology, the terminal node (TN) can dynamically adjust its computational speed, thus providing a new way to save energy during task offloading in fog computing. Focusing on the scenario of one TN and multiple fog nodes (FNs), this paper proposed an Energy-Minimized Partial Task Offloading (EMPTO) scheme for the first time to reduce the overall energy consumption based on DVS technology. Firstly, by modeling the energy consumption and processing delay of task offloading, we formulated the problem of minimizing energy consumption. Then, using the variable substitution method, we transformed this energy minimization problem into a univariate optimization problem about the TN’s computational speed. By solving this problem, EMPTO gets the optimal TN’s computational speed, task offloading size between each pair of TN and FN, and the overall energy consumption. Finally, EMPTO selects the offloading scheme with the lowest overall energy consumption as the final scheme. Theoretical proof and simulation results show that EMPTO can achieve the minimum energy consumption by DVS technology under delay constraint.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11276-022-03052-3</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-0038 |
ispartof | Wireless networks, 2022-11, Vol.28 (8), p.3337-3347 |
issn | 1022-0038 1572-8196 |
language | eng |
recordid | cdi_proquest_journals_2728320983 |
source | SpringerLink Journals - AutoHoldings |
subjects | Cloud computing Communications Engineering Computation offloading Computer Communication Networks Electric potential Electrical Engineering Energy consumption Engineering IT in Business Networks Optimization Original Paper Voltage Wireless networks |
title | Dynamic voltage scaling based energy-minimized partial task offloading in fog networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20voltage%20scaling%20based%20energy-minimized%20partial%20task%20offloading%20in%20fog%20networks&rft.jtitle=Wireless%20networks&rft.au=Qin,%20Yuancheng&rft.date=2022-11-01&rft.volume=28&rft.issue=8&rft.spage=3337&rft.epage=3347&rft.pages=3337-3347&rft.issn=1022-0038&rft.eissn=1572-8196&rft_id=info:doi/10.1007/s11276-022-03052-3&rft_dat=%3Cproquest_cross%3E2728320983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728320983&rft_id=info:pmid/&rfr_iscdi=true |