Efficient deep learning architectures for fast identification of bacterial strains in resource-constrained devices
This work presents twelve fine-tuned deep learning architectures to solve the bacterial classification problem over the digital image of bacterial species dataset. The base architectures were mainly published as mobile or efficient solutions to the ImageNet challenge, and all experiments presented i...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2022-11, Vol.81 (28), p.39915-39944 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39944 |
---|---|
container_issue | 28 |
container_start_page | 39915 |
container_title | Multimedia tools and applications |
container_volume | 81 |
creator | Gallardo García, Rafael Jarquín Rodríguez, Sofía Beltrán Martínez, Beatriz Hernández Gracidas, Carlos Martínez Torres, Rodolfo |
description | This work presents twelve fine-tuned deep learning architectures to solve the bacterial classification problem over the digital image of bacterial species dataset. The base architectures were mainly published as mobile or efficient solutions to the ImageNet challenge, and all experiments presented in this work consisted in making several modifications to the original designs, in order to make them able to solve the bacterial classification problem by using fine-tuning and transfer learning techniques. This work also proposes a novel data augmentation technique for this dataset, which is based on the idea of artificial zooming, strongly increasing the performance of every tested architecture, even doubling it in some cases. In order to get robust and complete evaluations, all experiments were performed with 10-fold cross-validation and evaluated with five different metrics: top-1 and top-5 accuracy, precision, recall, and F1 score. This paper presents a complete comparison of the twelve different architectures, cross-validated with the original and the augmented version of the dataset, the results are also compared with several literature methods. Overall, eight of the eleven architectures surpassed the 0.95 score in top-1 accuracy with our data augmentation method, being 0.9738 the highest top-1 accuracy. The impact of the data augmentation technique is reported with relative improvement scores. |
doi_str_mv | 10.1007/s11042-022-13022-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2728313824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728313824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-eeca11313820dfb719bd93fab22d07da6078938d25e5d1233d0dc53e168e71923</originalsourceid><addsrcrecordid>eNp9kM1OAyEURonRxFp9AVckrlEudMrM0jT1J2niRteEgUulqUwFauLbSzsm7twAIed89-Yj5Br4LXCu7jIAnwnGhWAgD2d7QibQKMmUEnBa37LlTDUczslFzhvOYd6I2YSkpffBBoyFOsQd3aJJMcQ1Ncm-h4K27BNm6odEvcmFBlfRUBVTwhDp4GlvbMEUzJbmkkyImYZIqzPsk0Vmhzh-o6sDvoLFfEnOvNlmvPq9p-TtYfm6eGKrl8fnxf2KWQldYYjWAMi6uODO9wq63nXSm14Ix5Uzc67aTrZONNg4EFI67mwjEeYtVljIKbkZc3dp-NxjLnpTd4p1pBZKtMfkWaXESNk05JzQ610KHyZ9a-D60K0eu9W1VX3sVrdVkqOUKxzXmP6i_7F-ANS9fjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728313824</pqid></control><display><type>article</type><title>Efficient deep learning architectures for fast identification of bacterial strains in resource-constrained devices</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gallardo García, Rafael ; Jarquín Rodríguez, Sofía ; Beltrán Martínez, Beatriz ; Hernández Gracidas, Carlos ; Martínez Torres, Rodolfo</creator><creatorcontrib>Gallardo García, Rafael ; Jarquín Rodríguez, Sofía ; Beltrán Martínez, Beatriz ; Hernández Gracidas, Carlos ; Martínez Torres, Rodolfo</creatorcontrib><description>This work presents twelve fine-tuned deep learning architectures to solve the bacterial classification problem over the digital image of bacterial species dataset. The base architectures were mainly published as mobile or efficient solutions to the ImageNet challenge, and all experiments presented in this work consisted in making several modifications to the original designs, in order to make them able to solve the bacterial classification problem by using fine-tuning and transfer learning techniques. This work also proposes a novel data augmentation technique for this dataset, which is based on the idea of artificial zooming, strongly increasing the performance of every tested architecture, even doubling it in some cases. In order to get robust and complete evaluations, all experiments were performed with 10-fold cross-validation and evaluated with five different metrics: top-1 and top-5 accuracy, precision, recall, and F1 score. This paper presents a complete comparison of the twelve different architectures, cross-validated with the original and the augmented version of the dataset, the results are also compared with several literature methods. Overall, eight of the eleven architectures surpassed the 0.95 score in top-1 accuracy with our data augmentation method, being 0.9738 the highest top-1 accuracy. The impact of the data augmentation technique is reported with relative improvement scores.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-022-13022-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Bacteria ; Computer Communication Networks ; Computer Science ; Data augmentation ; Data Structures and Information Theory ; Datasets ; Deep learning ; Digital imaging ; Image classification ; Machine learning ; Multimedia Information Systems ; Special Purpose and Application-Based Systems ; Zooming</subject><ispartof>Multimedia tools and applications, 2022-11, Vol.81 (28), p.39915-39944</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-eeca11313820dfb719bd93fab22d07da6078938d25e5d1233d0dc53e168e71923</citedby><cites>FETCH-LOGICAL-c319t-eeca11313820dfb719bd93fab22d07da6078938d25e5d1233d0dc53e168e71923</cites><orcidid>0000-0003-4528-4222 ; 0000-0001-5085-3501 ; 0000-0002-5552-3699 ; 0000-0003-0267-6306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-022-13022-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-022-13022-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Gallardo García, Rafael</creatorcontrib><creatorcontrib>Jarquín Rodríguez, Sofía</creatorcontrib><creatorcontrib>Beltrán Martínez, Beatriz</creatorcontrib><creatorcontrib>Hernández Gracidas, Carlos</creatorcontrib><creatorcontrib>Martínez Torres, Rodolfo</creatorcontrib><title>Efficient deep learning architectures for fast identification of bacterial strains in resource-constrained devices</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>This work presents twelve fine-tuned deep learning architectures to solve the bacterial classification problem over the digital image of bacterial species dataset. The base architectures were mainly published as mobile or efficient solutions to the ImageNet challenge, and all experiments presented in this work consisted in making several modifications to the original designs, in order to make them able to solve the bacterial classification problem by using fine-tuning and transfer learning techniques. This work also proposes a novel data augmentation technique for this dataset, which is based on the idea of artificial zooming, strongly increasing the performance of every tested architecture, even doubling it in some cases. In order to get robust and complete evaluations, all experiments were performed with 10-fold cross-validation and evaluated with five different metrics: top-1 and top-5 accuracy, precision, recall, and F1 score. This paper presents a complete comparison of the twelve different architectures, cross-validated with the original and the augmented version of the dataset, the results are also compared with several literature methods. Overall, eight of the eleven architectures surpassed the 0.95 score in top-1 accuracy with our data augmentation method, being 0.9738 the highest top-1 accuracy. The impact of the data augmentation technique is reported with relative improvement scores.</description><subject>Accuracy</subject><subject>Bacteria</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data augmentation</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Digital imaging</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Multimedia Information Systems</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Zooming</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1OAyEURonRxFp9AVckrlEudMrM0jT1J2niRteEgUulqUwFauLbSzsm7twAIed89-Yj5Br4LXCu7jIAnwnGhWAgD2d7QibQKMmUEnBa37LlTDUczslFzhvOYd6I2YSkpffBBoyFOsQd3aJJMcQ1Ncm-h4K27BNm6odEvcmFBlfRUBVTwhDp4GlvbMEUzJbmkkyImYZIqzPsk0Vmhzh-o6sDvoLFfEnOvNlmvPq9p-TtYfm6eGKrl8fnxf2KWQldYYjWAMi6uODO9wq63nXSm14Ix5Uzc67aTrZONNg4EFI67mwjEeYtVljIKbkZc3dp-NxjLnpTd4p1pBZKtMfkWaXESNk05JzQ610KHyZ9a-D60K0eu9W1VX3sVrdVkqOUKxzXmP6i_7F-ANS9fjE</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Gallardo García, Rafael</creator><creator>Jarquín Rodríguez, Sofía</creator><creator>Beltrán Martínez, Beatriz</creator><creator>Hernández Gracidas, Carlos</creator><creator>Martínez Torres, Rodolfo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4528-4222</orcidid><orcidid>https://orcid.org/0000-0001-5085-3501</orcidid><orcidid>https://orcid.org/0000-0002-5552-3699</orcidid><orcidid>https://orcid.org/0000-0003-0267-6306</orcidid></search><sort><creationdate>20221101</creationdate><title>Efficient deep learning architectures for fast identification of bacterial strains in resource-constrained devices</title><author>Gallardo García, Rafael ; Jarquín Rodríguez, Sofía ; Beltrán Martínez, Beatriz ; Hernández Gracidas, Carlos ; Martínez Torres, Rodolfo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-eeca11313820dfb719bd93fab22d07da6078938d25e5d1233d0dc53e168e71923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Bacteria</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data augmentation</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Digital imaging</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Multimedia Information Systems</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Zooming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallardo García, Rafael</creatorcontrib><creatorcontrib>Jarquín Rodríguez, Sofía</creatorcontrib><creatorcontrib>Beltrán Martínez, Beatriz</creatorcontrib><creatorcontrib>Hernández Gracidas, Carlos</creatorcontrib><creatorcontrib>Martínez Torres, Rodolfo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallardo García, Rafael</au><au>Jarquín Rodríguez, Sofía</au><au>Beltrán Martínez, Beatriz</au><au>Hernández Gracidas, Carlos</au><au>Martínez Torres, Rodolfo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient deep learning architectures for fast identification of bacterial strains in resource-constrained devices</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>81</volume><issue>28</issue><spage>39915</spage><epage>39944</epage><pages>39915-39944</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>This work presents twelve fine-tuned deep learning architectures to solve the bacterial classification problem over the digital image of bacterial species dataset. The base architectures were mainly published as mobile or efficient solutions to the ImageNet challenge, and all experiments presented in this work consisted in making several modifications to the original designs, in order to make them able to solve the bacterial classification problem by using fine-tuning and transfer learning techniques. This work also proposes a novel data augmentation technique for this dataset, which is based on the idea of artificial zooming, strongly increasing the performance of every tested architecture, even doubling it in some cases. In order to get robust and complete evaluations, all experiments were performed with 10-fold cross-validation and evaluated with five different metrics: top-1 and top-5 accuracy, precision, recall, and F1 score. This paper presents a complete comparison of the twelve different architectures, cross-validated with the original and the augmented version of the dataset, the results are also compared with several literature methods. Overall, eight of the eleven architectures surpassed the 0.95 score in top-1 accuracy with our data augmentation method, being 0.9738 the highest top-1 accuracy. The impact of the data augmentation technique is reported with relative improvement scores.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-022-13022-8</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-4528-4222</orcidid><orcidid>https://orcid.org/0000-0001-5085-3501</orcidid><orcidid>https://orcid.org/0000-0002-5552-3699</orcidid><orcidid>https://orcid.org/0000-0003-0267-6306</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2022-11, Vol.81 (28), p.39915-39944 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2728313824 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accuracy Bacteria Computer Communication Networks Computer Science Data augmentation Data Structures and Information Theory Datasets Deep learning Digital imaging Image classification Machine learning Multimedia Information Systems Special Purpose and Application-Based Systems Zooming |
title | Efficient deep learning architectures for fast identification of bacterial strains in resource-constrained devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A15%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20deep%20learning%20architectures%20for%20fast%20identification%20of%20bacterial%20strains%20in%20resource-constrained%20devices&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Gallardo%20Garc%C3%ADa,%20Rafael&rft.date=2022-11-01&rft.volume=81&rft.issue=28&rft.spage=39915&rft.epage=39944&rft.pages=39915-39944&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-022-13022-8&rft_dat=%3Cproquest_cross%3E2728313824%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728313824&rft_id=info:pmid/&rfr_iscdi=true |