Emotion-cause pair extraction based on machine reading comprehension model

In this paper, we propose a BERT-based framework for Emotion-Cause Pair Extraction (ECPE) task. Given a passage, the ECPE task aims to jointly extract (1) emotion-related clauses and (2) cause clauses (the clause caused the emotion). Our framework is featured by the following two novel designs. Firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2022-11, Vol.81 (28), p.40653-40673
Hauptverfasser: Chang, Ting Wei, Fan, Yao-Chung, Chen, Arbee L.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40673
container_issue 28
container_start_page 40653
container_title Multimedia tools and applications
container_volume 81
creator Chang, Ting Wei
Fan, Yao-Chung
Chen, Arbee L.P.
description In this paper, we propose a BERT-based framework for Emotion-Cause Pair Extraction (ECPE) task. Given a passage, the ECPE task aims to jointly extract (1) emotion-related clauses and (2) cause clauses (the clause caused the emotion). Our framework is featured by the following two novel designs. First, we formulate the emotion and cause extraction task as a machine reading comprehension (MRC) task. The MRC task is to read a given text passage, and then answer questions by comprehending the article. In our formulation, we treat the ECPE passage as MRC input and pose questions like (Which clauses cause the emotions?). The idea is to leverage the power of MRC model based on recent pre-trained language model. Second, we formulate the emotion-cause pair detection as contextual relatedness detection problem, which can be also effectively addressed by pre-trained language model. The experiment results based on benchmarking datasets demonstrate the effectiveness of the proposed approach; we advance the state-of-the-art results from 61% to 65% in terms of F1 scores.
doi_str_mv 10.1007/s11042-022-13110-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2728312740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728312740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-4e9eb6fde85730d6a68c70f1dc2931c9085478800d1e7e4e16e949c22c8071d83</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxRdRsFb_AU8LnqMz2ewmOUqpXxS86DmkyWy7pfthsgX9701dwZuneQy_92Z4WXaNcIsA8i4iguAMOGdYJM30STbDUhZMSo6nSRcKmCwBz7OLGHcAWJVczLKXZduPTd8xZw-R8sE2IafPMVh33OZrG8nnSbTWbZuO8kDWN90md307BNpSF49Y23vaX2Zntd1Huvqd8-z9Yfm2eGKr18fnxf2KOS70yARpWle1J5XeA1_ZSjkJNXrHdYFOgyqFVArAI0kShBVpoR3nToFEr4p5djPlDqH_OFAcza4_hC6dNFxyVSCXAhLFJ8qFPsZAtRlC09rwZRDMsTMzdWZSZ-anM6OTqZhMMcHdhsJf9D-ub9yGblA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728312740</pqid></control><display><type>article</type><title>Emotion-cause pair extraction based on machine reading comprehension model</title><source>Springer Nature - Complete Springer Journals</source><creator>Chang, Ting Wei ; Fan, Yao-Chung ; Chen, Arbee L.P.</creator><creatorcontrib>Chang, Ting Wei ; Fan, Yao-Chung ; Chen, Arbee L.P.</creatorcontrib><description>In this paper, we propose a BERT-based framework for Emotion-Cause Pair Extraction (ECPE) task. Given a passage, the ECPE task aims to jointly extract (1) emotion-related clauses and (2) cause clauses (the clause caused the emotion). Our framework is featured by the following two novel designs. First, we formulate the emotion and cause extraction task as a machine reading comprehension (MRC) task. The MRC task is to read a given text passage, and then answer questions by comprehending the article. In our formulation, we treat the ECPE passage as MRC input and pose questions like (Which clauses cause the emotions?). The idea is to leverage the power of MRC model based on recent pre-trained language model. Second, we formulate the emotion-cause pair detection as contextual relatedness detection problem, which can be also effectively addressed by pre-trained language model. The experiment results based on benchmarking datasets demonstrate the effectiveness of the proposed approach; we advance the state-of-the-art results from 61% to 65% in terms of F1 scores.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-022-13110-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Emotions ; Multimedia Information Systems ; Questions ; Reading comprehension ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2022-11, Vol.81 (28), p.40653-40673</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-4e9eb6fde85730d6a68c70f1dc2931c9085478800d1e7e4e16e949c22c8071d83</citedby><cites>FETCH-LOGICAL-c249t-4e9eb6fde85730d6a68c70f1dc2931c9085478800d1e7e4e16e949c22c8071d83</cites><orcidid>0000-0003-2872-4484</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-022-13110-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-022-13110-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Chang, Ting Wei</creatorcontrib><creatorcontrib>Fan, Yao-Chung</creatorcontrib><creatorcontrib>Chen, Arbee L.P.</creatorcontrib><title>Emotion-cause pair extraction based on machine reading comprehension model</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In this paper, we propose a BERT-based framework for Emotion-Cause Pair Extraction (ECPE) task. Given a passage, the ECPE task aims to jointly extract (1) emotion-related clauses and (2) cause clauses (the clause caused the emotion). Our framework is featured by the following two novel designs. First, we formulate the emotion and cause extraction task as a machine reading comprehension (MRC) task. The MRC task is to read a given text passage, and then answer questions by comprehending the article. In our formulation, we treat the ECPE passage as MRC input and pose questions like (Which clauses cause the emotions?). The idea is to leverage the power of MRC model based on recent pre-trained language model. Second, we formulate the emotion-cause pair detection as contextual relatedness detection problem, which can be also effectively addressed by pre-trained language model. The experiment results based on benchmarking datasets demonstrate the effectiveness of the proposed approach; we advance the state-of-the-art results from 61% to 65% in terms of F1 scores.</description><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Emotions</subject><subject>Multimedia Information Systems</subject><subject>Questions</subject><subject>Reading comprehension</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1LAzEQxRdRsFb_AU8LnqMz2ewmOUqpXxS86DmkyWy7pfthsgX9701dwZuneQy_92Z4WXaNcIsA8i4iguAMOGdYJM30STbDUhZMSo6nSRcKmCwBz7OLGHcAWJVczLKXZduPTd8xZw-R8sE2IafPMVh33OZrG8nnSbTWbZuO8kDWN90md307BNpSF49Y23vaX2Zntd1Huvqd8-z9Yfm2eGKr18fnxf2KOS70yARpWle1J5XeA1_ZSjkJNXrHdYFOgyqFVArAI0kShBVpoR3nToFEr4p5djPlDqH_OFAcza4_hC6dNFxyVSCXAhLFJ8qFPsZAtRlC09rwZRDMsTMzdWZSZ-anM6OTqZhMMcHdhsJf9D-ub9yGblA</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Chang, Ting Wei</creator><creator>Fan, Yao-Chung</creator><creator>Chen, Arbee L.P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2872-4484</orcidid></search><sort><creationdate>20221101</creationdate><title>Emotion-cause pair extraction based on machine reading comprehension model</title><author>Chang, Ting Wei ; Fan, Yao-Chung ; Chen, Arbee L.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-4e9eb6fde85730d6a68c70f1dc2931c9085478800d1e7e4e16e949c22c8071d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Emotions</topic><topic>Multimedia Information Systems</topic><topic>Questions</topic><topic>Reading comprehension</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Ting Wei</creatorcontrib><creatorcontrib>Fan, Yao-Chung</creatorcontrib><creatorcontrib>Chen, Arbee L.P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Ting Wei</au><au>Fan, Yao-Chung</au><au>Chen, Arbee L.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emotion-cause pair extraction based on machine reading comprehension model</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>81</volume><issue>28</issue><spage>40653</spage><epage>40673</epage><pages>40653-40673</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In this paper, we propose a BERT-based framework for Emotion-Cause Pair Extraction (ECPE) task. Given a passage, the ECPE task aims to jointly extract (1) emotion-related clauses and (2) cause clauses (the clause caused the emotion). Our framework is featured by the following two novel designs. First, we formulate the emotion and cause extraction task as a machine reading comprehension (MRC) task. The MRC task is to read a given text passage, and then answer questions by comprehending the article. In our formulation, we treat the ECPE passage as MRC input and pose questions like (Which clauses cause the emotions?). The idea is to leverage the power of MRC model based on recent pre-trained language model. Second, we formulate the emotion-cause pair detection as contextual relatedness detection problem, which can be also effectively addressed by pre-trained language model. The experiment results based on benchmarking datasets demonstrate the effectiveness of the proposed approach; we advance the state-of-the-art results from 61% to 65% in terms of F1 scores.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-022-13110-9</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-2872-4484</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2022-11, Vol.81 (28), p.40653-40673
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2728312740
source Springer Nature - Complete Springer Journals
subjects Computer Communication Networks
Computer Science
Data Structures and Information Theory
Emotions
Multimedia Information Systems
Questions
Reading comprehension
Special Purpose and Application-Based Systems
title Emotion-cause pair extraction based on machine reading comprehension model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emotion-cause%20pair%20extraction%20based%20on%20machine%20reading%20comprehension%20model&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Chang,%20Ting%20Wei&rft.date=2022-11-01&rft.volume=81&rft.issue=28&rft.spage=40653&rft.epage=40673&rft.pages=40653-40673&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-022-13110-9&rft_dat=%3Cproquest_cross%3E2728312740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728312740&rft_id=info:pmid/&rfr_iscdi=true