Emotion-cause pair extraction based on machine reading comprehension model
In this paper, we propose a BERT-based framework for Emotion-Cause Pair Extraction (ECPE) task. Given a passage, the ECPE task aims to jointly extract (1) emotion-related clauses and (2) cause clauses (the clause caused the emotion). Our framework is featured by the following two novel designs. Firs...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2022-11, Vol.81 (28), p.40653-40673 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40673 |
---|---|
container_issue | 28 |
container_start_page | 40653 |
container_title | Multimedia tools and applications |
container_volume | 81 |
creator | Chang, Ting Wei Fan, Yao-Chung Chen, Arbee L.P. |
description | In this paper, we propose a BERT-based framework for Emotion-Cause Pair Extraction (ECPE) task. Given a passage, the ECPE task aims to jointly extract (1) emotion-related clauses and (2) cause clauses (the clause caused the emotion). Our framework is featured by the following two novel designs. First, we formulate the emotion and cause extraction task as a machine reading comprehension (MRC) task. The MRC task is to read a given text passage, and then answer questions by comprehending the article. In our formulation, we treat the ECPE passage as MRC input and pose questions like (Which clauses cause the emotions?). The idea is to leverage the power of MRC model based on recent pre-trained language model. Second, we formulate the emotion-cause pair detection as contextual relatedness detection problem, which can be also effectively addressed by pre-trained language model. The experiment results based on benchmarking datasets demonstrate the effectiveness of the proposed approach; we advance the state-of-the-art results from 61% to 65% in terms of F1 scores. |
doi_str_mv | 10.1007/s11042-022-13110-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2728312740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728312740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-4e9eb6fde85730d6a68c70f1dc2931c9085478800d1e7e4e16e949c22c8071d83</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxRdRsFb_AU8LnqMz2ewmOUqpXxS86DmkyWy7pfthsgX9701dwZuneQy_92Z4WXaNcIsA8i4iguAMOGdYJM30STbDUhZMSo6nSRcKmCwBz7OLGHcAWJVczLKXZduPTd8xZw-R8sE2IafPMVh33OZrG8nnSbTWbZuO8kDWN90md307BNpSF49Y23vaX2Zntd1Huvqd8-z9Yfm2eGKr18fnxf2KOS70yARpWle1J5XeA1_ZSjkJNXrHdYFOgyqFVArAI0kShBVpoR3nToFEr4p5djPlDqH_OFAcza4_hC6dNFxyVSCXAhLFJ8qFPsZAtRlC09rwZRDMsTMzdWZSZ-anM6OTqZhMMcHdhsJf9D-ub9yGblA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728312740</pqid></control><display><type>article</type><title>Emotion-cause pair extraction based on machine reading comprehension model</title><source>Springer Nature - Complete Springer Journals</source><creator>Chang, Ting Wei ; Fan, Yao-Chung ; Chen, Arbee L.P.</creator><creatorcontrib>Chang, Ting Wei ; Fan, Yao-Chung ; Chen, Arbee L.P.</creatorcontrib><description>In this paper, we propose a BERT-based framework for Emotion-Cause Pair Extraction (ECPE) task. Given a passage, the ECPE task aims to jointly extract (1) emotion-related clauses and (2) cause clauses (the clause caused the emotion). Our framework is featured by the following two novel designs. First, we formulate the emotion and cause extraction task as a machine reading comprehension (MRC) task. The MRC task is to read a given text passage, and then answer questions by comprehending the article. In our formulation, we treat the ECPE passage as MRC input and pose questions like (Which clauses cause the emotions?). The idea is to leverage the power of MRC model based on recent pre-trained language model. Second, we formulate the emotion-cause pair detection as contextual relatedness detection problem, which can be also effectively addressed by pre-trained language model. The experiment results based on benchmarking datasets demonstrate the effectiveness of the proposed approach; we advance the state-of-the-art results from 61% to 65% in terms of F1 scores.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-022-13110-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Emotions ; Multimedia Information Systems ; Questions ; Reading comprehension ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2022-11, Vol.81 (28), p.40653-40673</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-4e9eb6fde85730d6a68c70f1dc2931c9085478800d1e7e4e16e949c22c8071d83</citedby><cites>FETCH-LOGICAL-c249t-4e9eb6fde85730d6a68c70f1dc2931c9085478800d1e7e4e16e949c22c8071d83</cites><orcidid>0000-0003-2872-4484</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-022-13110-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-022-13110-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Chang, Ting Wei</creatorcontrib><creatorcontrib>Fan, Yao-Chung</creatorcontrib><creatorcontrib>Chen, Arbee L.P.</creatorcontrib><title>Emotion-cause pair extraction based on machine reading comprehension model</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In this paper, we propose a BERT-based framework for Emotion-Cause Pair Extraction (ECPE) task. Given a passage, the ECPE task aims to jointly extract (1) emotion-related clauses and (2) cause clauses (the clause caused the emotion). Our framework is featured by the following two novel designs. First, we formulate the emotion and cause extraction task as a machine reading comprehension (MRC) task. The MRC task is to read a given text passage, and then answer questions by comprehending the article. In our formulation, we treat the ECPE passage as MRC input and pose questions like (Which clauses cause the emotions?). The idea is to leverage the power of MRC model based on recent pre-trained language model. Second, we formulate the emotion-cause pair detection as contextual relatedness detection problem, which can be also effectively addressed by pre-trained language model. The experiment results based on benchmarking datasets demonstrate the effectiveness of the proposed approach; we advance the state-of-the-art results from 61% to 65% in terms of F1 scores.</description><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Emotions</subject><subject>Multimedia Information Systems</subject><subject>Questions</subject><subject>Reading comprehension</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1LAzEQxRdRsFb_AU8LnqMz2ewmOUqpXxS86DmkyWy7pfthsgX9701dwZuneQy_92Z4WXaNcIsA8i4iguAMOGdYJM30STbDUhZMSo6nSRcKmCwBz7OLGHcAWJVczLKXZduPTd8xZw-R8sE2IafPMVh33OZrG8nnSbTWbZuO8kDWN90md307BNpSF49Y23vaX2Zntd1Huvqd8-z9Yfm2eGKr18fnxf2KOS70yARpWle1J5XeA1_ZSjkJNXrHdYFOgyqFVArAI0kShBVpoR3nToFEr4p5djPlDqH_OFAcza4_hC6dNFxyVSCXAhLFJ8qFPsZAtRlC09rwZRDMsTMzdWZSZ-anM6OTqZhMMcHdhsJf9D-ub9yGblA</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Chang, Ting Wei</creator><creator>Fan, Yao-Chung</creator><creator>Chen, Arbee L.P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2872-4484</orcidid></search><sort><creationdate>20221101</creationdate><title>Emotion-cause pair extraction based on machine reading comprehension model</title><author>Chang, Ting Wei ; Fan, Yao-Chung ; Chen, Arbee L.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-4e9eb6fde85730d6a68c70f1dc2931c9085478800d1e7e4e16e949c22c8071d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Emotions</topic><topic>Multimedia Information Systems</topic><topic>Questions</topic><topic>Reading comprehension</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Ting Wei</creatorcontrib><creatorcontrib>Fan, Yao-Chung</creatorcontrib><creatorcontrib>Chen, Arbee L.P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Ting Wei</au><au>Fan, Yao-Chung</au><au>Chen, Arbee L.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emotion-cause pair extraction based on machine reading comprehension model</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>81</volume><issue>28</issue><spage>40653</spage><epage>40673</epage><pages>40653-40673</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In this paper, we propose a BERT-based framework for Emotion-Cause Pair Extraction (ECPE) task. Given a passage, the ECPE task aims to jointly extract (1) emotion-related clauses and (2) cause clauses (the clause caused the emotion). Our framework is featured by the following two novel designs. First, we formulate the emotion and cause extraction task as a machine reading comprehension (MRC) task. The MRC task is to read a given text passage, and then answer questions by comprehending the article. In our formulation, we treat the ECPE passage as MRC input and pose questions like (Which clauses cause the emotions?). The idea is to leverage the power of MRC model based on recent pre-trained language model. Second, we formulate the emotion-cause pair detection as contextual relatedness detection problem, which can be also effectively addressed by pre-trained language model. The experiment results based on benchmarking datasets demonstrate the effectiveness of the proposed approach; we advance the state-of-the-art results from 61% to 65% in terms of F1 scores.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-022-13110-9</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-2872-4484</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2022-11, Vol.81 (28), p.40653-40673 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2728312740 |
source | Springer Nature - Complete Springer Journals |
subjects | Computer Communication Networks Computer Science Data Structures and Information Theory Emotions Multimedia Information Systems Questions Reading comprehension Special Purpose and Application-Based Systems |
title | Emotion-cause pair extraction based on machine reading comprehension model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emotion-cause%20pair%20extraction%20based%20on%20machine%20reading%20comprehension%20model&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Chang,%20Ting%20Wei&rft.date=2022-11-01&rft.volume=81&rft.issue=28&rft.spage=40653&rft.epage=40673&rft.pages=40653-40673&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-022-13110-9&rft_dat=%3Cproquest_cross%3E2728312740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728312740&rft_id=info:pmid/&rfr_iscdi=true |