Authentication of the Geographical Origin of Shandong Scallop Chlamys farreri Using Mineral Elements Combined with Multivariate Data Analysis and Machine Learning Algorithm

Geographical traceability of seafood is a global concern for both consumers and importers. It is urgent to develop a scientific approach for identifying the geographic origin of seafood to combat labeling fraud. This study verified 14 mineral elements as a tracer for identify the geographic origin o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food analytical methods 2022-11, Vol.15 (11), p.2984-2993
Hauptverfasser: Kang, Xuming, Zhao, Yanfang, Peng, Jixing, Ding, Haiyan, Tan, Zhijun, Han, Cui, Sheng, Xiaofeng, Liu, Xiyin, Zhai, Yuxiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2993
container_issue 11
container_start_page 2984
container_title Food analytical methods
container_volume 15
creator Kang, Xuming
Zhao, Yanfang
Peng, Jixing
Ding, Haiyan
Tan, Zhijun
Han, Cui
Sheng, Xiaofeng
Liu, Xiyin
Zhai, Yuxiu
description Geographical traceability of seafood is a global concern for both consumers and importers. It is urgent to develop a scientific approach for identifying the geographic origin of seafood to combat labeling fraud. This study verified 14 mineral elements as a tracer for identify the geographic origin of scallops in Shandong Province of China. Multivariate data analysis and machine learning algorithm including linear discriminate analysis (LDA), k -nearest neighbor (KNN), random forest (RF) and support vector machine (SVM) were used to evaluate their performance in terms of classification or predictive ability. Thirteen elements in scallop samples with different regions showed significant differences ( p  
doi_str_mv 10.1007/s12161-022-02346-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2728164796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728164796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-71f742410e8aee50aa4589072b4740f10bebec82d5696b63cc50092950dc6b143</originalsourceid><addsrcrecordid>eNp9kVFLwzAUhYsoOKd_wKeAz9UkTdP2scw5hY09zIFv4bZL24y2mUmq7D_5I8020TcfQnLPPd8hcILgluB7gnHyYAklnISYUn8ixsP0LBiRLOJhlvC38993TC6DK2u3GHPMCB0FX_ngGtk7VYJTuke6Qn5GM6lrA7vGyy1aGlWr42rVQL_RfY1WXm_1Dk2aFrq9RRUYI41Ca6v8dqF6aTw4bWXnsy2a6K7w2gZ9KtegxdA69QFGgZPoERygvId2b5VFPh4toGy8Gc0lmP4Ql7e1Nh7sroOLClorb37ucbB-mr5OnsP5cvYyyedhGZHMhQmpEkYZwTIFKWMMwOI0wwktWMJwRXAhC1mmdBPzjBc8KssY44xmMd6UvCAsGgd3p9yd0e-DtE5s9WD8H62gCU0JZ0nGvYueXKXR1hpZiZ1RHZi9IFgcWhGnVoRvRRxbEamHohNkvbmvpfmL_of6Bl4jkmc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728164796</pqid></control><display><type>article</type><title>Authentication of the Geographical Origin of Shandong Scallop Chlamys farreri Using Mineral Elements Combined with Multivariate Data Analysis and Machine Learning Algorithm</title><source>SpringerNature Journals</source><creator>Kang, Xuming ; Zhao, Yanfang ; Peng, Jixing ; Ding, Haiyan ; Tan, Zhijun ; Han, Cui ; Sheng, Xiaofeng ; Liu, Xiyin ; Zhai, Yuxiu</creator><creatorcontrib>Kang, Xuming ; Zhao, Yanfang ; Peng, Jixing ; Ding, Haiyan ; Tan, Zhijun ; Han, Cui ; Sheng, Xiaofeng ; Liu, Xiyin ; Zhai, Yuxiu</creatorcontrib><description>Geographical traceability of seafood is a global concern for both consumers and importers. It is urgent to develop a scientific approach for identifying the geographic origin of seafood to combat labeling fraud. This study verified 14 mineral elements as a tracer for identify the geographic origin of scallops in Shandong Province of China. Multivariate data analysis and machine learning algorithm including linear discriminate analysis (LDA), k -nearest neighbor (KNN), random forest (RF) and support vector machine (SVM) were used to evaluate their performance in terms of classification or predictive ability. Thirteen elements in scallop samples with different regions showed significant differences ( p  &lt; 0.05), which proved that the elemental composition was an effective tool for distinguishing the origins of scallops. The overall discrimination accuracy and predictive accuracy obtained from the LDA, KNN, RF, and SVM analysis was over 98.96% and 97.78%, respectively. Among these models, LDA model was the most recommended for the origin identification of scallops based on its high discriminant accuracy rate (100%), cross-validated accuracy rate (100%), and predictive accuracy rate (100%). Present results indicated the feasibility of element fingerprints combined with multivariate data analysis and machine learning algorithm in authenticating the geographical origin of scallops in China.</description><identifier>ISSN: 1936-9751</identifier><identifier>EISSN: 1936-976X</identifier><identifier>DOI: 10.1007/s12161-022-02346-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Analytical Chemistry ; Authentication ; Chemical composition ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Data analysis ; Discriminant analysis ; Food Science ; Fraud ; Geography ; Learning algorithms ; Machine learning ; Microbiology ; Multivariate analysis ; Scallops ; Seafood ; Support vector machines</subject><ispartof>Food analytical methods, 2022-11, Vol.15 (11), p.2984-2993</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-71f742410e8aee50aa4589072b4740f10bebec82d5696b63cc50092950dc6b143</citedby><cites>FETCH-LOGICAL-c319t-71f742410e8aee50aa4589072b4740f10bebec82d5696b63cc50092950dc6b143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12161-022-02346-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12161-022-02346-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Kang, Xuming</creatorcontrib><creatorcontrib>Zhao, Yanfang</creatorcontrib><creatorcontrib>Peng, Jixing</creatorcontrib><creatorcontrib>Ding, Haiyan</creatorcontrib><creatorcontrib>Tan, Zhijun</creatorcontrib><creatorcontrib>Han, Cui</creatorcontrib><creatorcontrib>Sheng, Xiaofeng</creatorcontrib><creatorcontrib>Liu, Xiyin</creatorcontrib><creatorcontrib>Zhai, Yuxiu</creatorcontrib><title>Authentication of the Geographical Origin of Shandong Scallop Chlamys farreri Using Mineral Elements Combined with Multivariate Data Analysis and Machine Learning Algorithm</title><title>Food analytical methods</title><addtitle>Food Anal. Methods</addtitle><description>Geographical traceability of seafood is a global concern for both consumers and importers. It is urgent to develop a scientific approach for identifying the geographic origin of seafood to combat labeling fraud. This study verified 14 mineral elements as a tracer for identify the geographic origin of scallops in Shandong Province of China. Multivariate data analysis and machine learning algorithm including linear discriminate analysis (LDA), k -nearest neighbor (KNN), random forest (RF) and support vector machine (SVM) were used to evaluate their performance in terms of classification or predictive ability. Thirteen elements in scallop samples with different regions showed significant differences ( p  &lt; 0.05), which proved that the elemental composition was an effective tool for distinguishing the origins of scallops. The overall discrimination accuracy and predictive accuracy obtained from the LDA, KNN, RF, and SVM analysis was over 98.96% and 97.78%, respectively. Among these models, LDA model was the most recommended for the origin identification of scallops based on its high discriminant accuracy rate (100%), cross-validated accuracy rate (100%), and predictive accuracy rate (100%). Present results indicated the feasibility of element fingerprints combined with multivariate data analysis and machine learning algorithm in authenticating the geographical origin of scallops in China.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analytical Chemistry</subject><subject>Authentication</subject><subject>Chemical composition</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Data analysis</subject><subject>Discriminant analysis</subject><subject>Food Science</subject><subject>Fraud</subject><subject>Geography</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Microbiology</subject><subject>Multivariate analysis</subject><subject>Scallops</subject><subject>Seafood</subject><subject>Support vector machines</subject><issn>1936-9751</issn><issn>1936-976X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kVFLwzAUhYsoOKd_wKeAz9UkTdP2scw5hY09zIFv4bZL24y2mUmq7D_5I8020TcfQnLPPd8hcILgluB7gnHyYAklnISYUn8ixsP0LBiRLOJhlvC38993TC6DK2u3GHPMCB0FX_ngGtk7VYJTuke6Qn5GM6lrA7vGyy1aGlWr42rVQL_RfY1WXm_1Dk2aFrq9RRUYI41Ca6v8dqF6aTw4bWXnsy2a6K7w2gZ9KtegxdA69QFGgZPoERygvId2b5VFPh4toGy8Gc0lmP4Ql7e1Nh7sroOLClorb37ucbB-mr5OnsP5cvYyyedhGZHMhQmpEkYZwTIFKWMMwOI0wwktWMJwRXAhC1mmdBPzjBc8KssY44xmMd6UvCAsGgd3p9yd0e-DtE5s9WD8H62gCU0JZ0nGvYueXKXR1hpZiZ1RHZi9IFgcWhGnVoRvRRxbEamHohNkvbmvpfmL_of6Bl4jkmc</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Kang, Xuming</creator><creator>Zhao, Yanfang</creator><creator>Peng, Jixing</creator><creator>Ding, Haiyan</creator><creator>Tan, Zhijun</creator><creator>Han, Cui</creator><creator>Sheng, Xiaofeng</creator><creator>Liu, Xiyin</creator><creator>Zhai, Yuxiu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221101</creationdate><title>Authentication of the Geographical Origin of Shandong Scallop Chlamys farreri Using Mineral Elements Combined with Multivariate Data Analysis and Machine Learning Algorithm</title><author>Kang, Xuming ; Zhao, Yanfang ; Peng, Jixing ; Ding, Haiyan ; Tan, Zhijun ; Han, Cui ; Sheng, Xiaofeng ; Liu, Xiyin ; Zhai, Yuxiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-71f742410e8aee50aa4589072b4740f10bebec82d5696b63cc50092950dc6b143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analytical Chemistry</topic><topic>Authentication</topic><topic>Chemical composition</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Data analysis</topic><topic>Discriminant analysis</topic><topic>Food Science</topic><topic>Fraud</topic><topic>Geography</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Microbiology</topic><topic>Multivariate analysis</topic><topic>Scallops</topic><topic>Seafood</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Xuming</creatorcontrib><creatorcontrib>Zhao, Yanfang</creatorcontrib><creatorcontrib>Peng, Jixing</creatorcontrib><creatorcontrib>Ding, Haiyan</creatorcontrib><creatorcontrib>Tan, Zhijun</creatorcontrib><creatorcontrib>Han, Cui</creatorcontrib><creatorcontrib>Sheng, Xiaofeng</creatorcontrib><creatorcontrib>Liu, Xiyin</creatorcontrib><creatorcontrib>Zhai, Yuxiu</creatorcontrib><collection>CrossRef</collection><jtitle>Food analytical methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Xuming</au><au>Zhao, Yanfang</au><au>Peng, Jixing</au><au>Ding, Haiyan</au><au>Tan, Zhijun</au><au>Han, Cui</au><au>Sheng, Xiaofeng</au><au>Liu, Xiyin</au><au>Zhai, Yuxiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Authentication of the Geographical Origin of Shandong Scallop Chlamys farreri Using Mineral Elements Combined with Multivariate Data Analysis and Machine Learning Algorithm</atitle><jtitle>Food analytical methods</jtitle><stitle>Food Anal. Methods</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>15</volume><issue>11</issue><spage>2984</spage><epage>2993</epage><pages>2984-2993</pages><issn>1936-9751</issn><eissn>1936-976X</eissn><abstract>Geographical traceability of seafood is a global concern for both consumers and importers. It is urgent to develop a scientific approach for identifying the geographic origin of seafood to combat labeling fraud. This study verified 14 mineral elements as a tracer for identify the geographic origin of scallops in Shandong Province of China. Multivariate data analysis and machine learning algorithm including linear discriminate analysis (LDA), k -nearest neighbor (KNN), random forest (RF) and support vector machine (SVM) were used to evaluate their performance in terms of classification or predictive ability. Thirteen elements in scallop samples with different regions showed significant differences ( p  &lt; 0.05), which proved that the elemental composition was an effective tool for distinguishing the origins of scallops. The overall discrimination accuracy and predictive accuracy obtained from the LDA, KNN, RF, and SVM analysis was over 98.96% and 97.78%, respectively. Among these models, LDA model was the most recommended for the origin identification of scallops based on its high discriminant accuracy rate (100%), cross-validated accuracy rate (100%), and predictive accuracy rate (100%). Present results indicated the feasibility of element fingerprints combined with multivariate data analysis and machine learning algorithm in authenticating the geographical origin of scallops in China.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12161-022-02346-8</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-9751
ispartof Food analytical methods, 2022-11, Vol.15 (11), p.2984-2993
issn 1936-9751
1936-976X
language eng
recordid cdi_proquest_journals_2728164796
source SpringerNature Journals
subjects Accuracy
Algorithms
Analytical Chemistry
Authentication
Chemical composition
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Data analysis
Discriminant analysis
Food Science
Fraud
Geography
Learning algorithms
Machine learning
Microbiology
Multivariate analysis
Scallops
Seafood
Support vector machines
title Authentication of the Geographical Origin of Shandong Scallop Chlamys farreri Using Mineral Elements Combined with Multivariate Data Analysis and Machine Learning Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T15%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Authentication%20of%20the%20Geographical%20Origin%20of%20Shandong%20Scallop%20Chlamys%20farreri%20Using%20Mineral%20Elements%20Combined%20with%20Multivariate%20Data%20Analysis%20and%20Machine%20Learning%20Algorithm&rft.jtitle=Food%20analytical%20methods&rft.au=Kang,%20Xuming&rft.date=2022-11-01&rft.volume=15&rft.issue=11&rft.spage=2984&rft.epage=2993&rft.pages=2984-2993&rft.issn=1936-9751&rft.eissn=1936-976X&rft_id=info:doi/10.1007/s12161-022-02346-8&rft_dat=%3Cproquest_cross%3E2728164796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728164796&rft_id=info:pmid/&rfr_iscdi=true