Well-posedness and tamed schemes for McKean–Vlasov equations with common noise
In this paper, we first establish well-posedness of McKean–Vlasov stochastic differential equations (McKean–Vlasov SDEs) with common noise, possibly with coefficients of super-linear growth in the state variable. Second, we present stable time-stepping schemes for this class of McKean–Vlasov SDEs. S...
Gespeichert in:
Veröffentlicht in: | The Annals of applied probability 2022-10, Vol.32 (5), p.3283 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 3283 |
container_title | The Annals of applied probability |
container_volume | 32 |
creator | Kumar, Chaman Neelima Reisinger, Christoph Stockinger, Wolfgang |
description | In this paper, we first establish well-posedness of McKean–Vlasov stochastic differential equations (McKean–Vlasov SDEs) with common noise, possibly with coefficients of super-linear growth in the state variable. Second, we present stable time-stepping schemes for this class of McKean–Vlasov SDEs. Specifically, we propose an explicit tamed Euler and tamed Milstein scheme for an interacting particle system associated with the McKean–Vlasov equation. We prove stability and strong convergence of order 1 / 2 and 1, respectively. To obtain our main results, we employ techniques from calculus on the Wasserstein space. The proof for the strong convergence of the tamed Milstein scheme only requires the coefficients to be once continuously differentiable in the state and measure component. To demonstrate our theoretical findings, we present several numerical examples, including mean-field versions of the stochastic 3 / 2 volatility model and the stochastic double well dynamics with multiplicative noise. |
doi_str_mv | 10.1214/21-AAP1760 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2727705242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2727705242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-ebb32c46d661d90e670c03b30ff304f36884e159fcd1c0586c85c8f1284e8a7f3</originalsourceid><addsrcrecordid>eNotkMtKAzEYhYMoWKsbnyDgThj9k8wkmWUp3rBiF16WQ5r5Q6fMJG0yVdz5Dr6hT-JIuzpw-DgHPkLOGVwxzvJrzrLJZM6UhAMy4kzqTCuhDsmIQQFZwWR-TE5SWgFAmZdqRObv2LbZOiSsPaZEja9pbzqsabJL7DBRFyJ9so9o_O_3z1trUviguNmavgk-0c-mX1Ibui546kOT8JQcOdMmPNvnmLze3rxM77PZ893DdDLLLC-LPsPFQnCby1pKVpeAUoEFsRDgnIDcCal1jqwona2ZhUJLqwurHeNDrY1yYkwudrvrGDZbTH21Ctvoh8uKK64UFDznA3W5o2wMKUV01To2nYlfFYPq31jFWbU3Jv4AgrJeTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727705242</pqid></control><display><type>article</type><title>Well-posedness and tamed schemes for McKean–Vlasov equations with common noise</title><source>Project Euclid Complete</source><creator>Kumar, Chaman ; Neelima ; Reisinger, Christoph ; Stockinger, Wolfgang</creator><creatorcontrib>Kumar, Chaman ; Neelima ; Reisinger, Christoph ; Stockinger, Wolfgang</creatorcontrib><description>In this paper, we first establish well-posedness of McKean–Vlasov stochastic differential equations (McKean–Vlasov SDEs) with common noise, possibly with coefficients of super-linear growth in the state variable. Second, we present stable time-stepping schemes for this class of McKean–Vlasov SDEs. Specifically, we propose an explicit tamed Euler and tamed Milstein scheme for an interacting particle system associated with the McKean–Vlasov equation. We prove stability and strong convergence of order 1 / 2 and 1, respectively. To obtain our main results, we employ techniques from calculus on the Wasserstein space. The proof for the strong convergence of the tamed Milstein scheme only requires the coefficients to be once continuously differentiable in the state and measure component. To demonstrate our theoretical findings, we present several numerical examples, including mean-field versions of the stochastic 3 / 2 volatility model and the stochastic double well dynamics with multiplicative noise.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/21-AAP1760</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Convergence ; Differential equations ; Nonlinear equations ; Numerical analysis ; Stochastic models ; Vlasov equations ; Well posed problems</subject><ispartof>The Annals of applied probability, 2022-10, Vol.32 (5), p.3283</ispartof><rights>Copyright Institute of Mathematical Statistics Oct 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-ebb32c46d661d90e670c03b30ff304f36884e159fcd1c0586c85c8f1284e8a7f3</citedby><cites>FETCH-LOGICAL-c295t-ebb32c46d661d90e670c03b30ff304f36884e159fcd1c0586c85c8f1284e8a7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Kumar, Chaman</creatorcontrib><creatorcontrib>Neelima</creatorcontrib><creatorcontrib>Reisinger, Christoph</creatorcontrib><creatorcontrib>Stockinger, Wolfgang</creatorcontrib><title>Well-posedness and tamed schemes for McKean–Vlasov equations with common noise</title><title>The Annals of applied probability</title><description>In this paper, we first establish well-posedness of McKean–Vlasov stochastic differential equations (McKean–Vlasov SDEs) with common noise, possibly with coefficients of super-linear growth in the state variable. Second, we present stable time-stepping schemes for this class of McKean–Vlasov SDEs. Specifically, we propose an explicit tamed Euler and tamed Milstein scheme for an interacting particle system associated with the McKean–Vlasov equation. We prove stability and strong convergence of order 1 / 2 and 1, respectively. To obtain our main results, we employ techniques from calculus on the Wasserstein space. The proof for the strong convergence of the tamed Milstein scheme only requires the coefficients to be once continuously differentiable in the state and measure component. To demonstrate our theoretical findings, we present several numerical examples, including mean-field versions of the stochastic 3 / 2 volatility model and the stochastic double well dynamics with multiplicative noise.</description><subject>Convergence</subject><subject>Differential equations</subject><subject>Nonlinear equations</subject><subject>Numerical analysis</subject><subject>Stochastic models</subject><subject>Vlasov equations</subject><subject>Well posed problems</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkMtKAzEYhYMoWKsbnyDgThj9k8wkmWUp3rBiF16WQ5r5Q6fMJG0yVdz5Dr6hT-JIuzpw-DgHPkLOGVwxzvJrzrLJZM6UhAMy4kzqTCuhDsmIQQFZwWR-TE5SWgFAmZdqRObv2LbZOiSsPaZEja9pbzqsabJL7DBRFyJ9so9o_O_3z1trUviguNmavgk-0c-mX1Ibui546kOT8JQcOdMmPNvnmLze3rxM77PZ893DdDLLLC-LPsPFQnCby1pKVpeAUoEFsRDgnIDcCal1jqwona2ZhUJLqwurHeNDrY1yYkwudrvrGDZbTH21Ctvoh8uKK64UFDznA3W5o2wMKUV01To2nYlfFYPq31jFWbU3Jv4AgrJeTA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Kumar, Chaman</creator><creator>Neelima</creator><creator>Reisinger, Christoph</creator><creator>Stockinger, Wolfgang</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20221001</creationdate><title>Well-posedness and tamed schemes for McKean–Vlasov equations with common noise</title><author>Kumar, Chaman ; Neelima ; Reisinger, Christoph ; Stockinger, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-ebb32c46d661d90e670c03b30ff304f36884e159fcd1c0586c85c8f1284e8a7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convergence</topic><topic>Differential equations</topic><topic>Nonlinear equations</topic><topic>Numerical analysis</topic><topic>Stochastic models</topic><topic>Vlasov equations</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Chaman</creatorcontrib><creatorcontrib>Neelima</creatorcontrib><creatorcontrib>Reisinger, Christoph</creatorcontrib><creatorcontrib>Stockinger, Wolfgang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Chaman</au><au>Neelima</au><au>Reisinger, Christoph</au><au>Stockinger, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Well-posedness and tamed schemes for McKean–Vlasov equations with common noise</atitle><jtitle>The Annals of applied probability</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>32</volume><issue>5</issue><spage>3283</spage><pages>3283-</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>In this paper, we first establish well-posedness of McKean–Vlasov stochastic differential equations (McKean–Vlasov SDEs) with common noise, possibly with coefficients of super-linear growth in the state variable. Second, we present stable time-stepping schemes for this class of McKean–Vlasov SDEs. Specifically, we propose an explicit tamed Euler and tamed Milstein scheme for an interacting particle system associated with the McKean–Vlasov equation. We prove stability and strong convergence of order 1 / 2 and 1, respectively. To obtain our main results, we employ techniques from calculus on the Wasserstein space. The proof for the strong convergence of the tamed Milstein scheme only requires the coefficients to be once continuously differentiable in the state and measure component. To demonstrate our theoretical findings, we present several numerical examples, including mean-field versions of the stochastic 3 / 2 volatility model and the stochastic double well dynamics with multiplicative noise.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/21-AAP1760</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-5164 |
ispartof | The Annals of applied probability, 2022-10, Vol.32 (5), p.3283 |
issn | 1050-5164 2168-8737 |
language | eng |
recordid | cdi_proquest_journals_2727705242 |
source | Project Euclid Complete |
subjects | Convergence Differential equations Nonlinear equations Numerical analysis Stochastic models Vlasov equations Well posed problems |
title | Well-posedness and tamed schemes for McKean–Vlasov equations with common noise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A00%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Well-posedness%20and%20tamed%20schemes%20for%20McKean%E2%80%93Vlasov%20equations%20with%20common%20noise&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Kumar,%20Chaman&rft.date=2022-10-01&rft.volume=32&rft.issue=5&rft.spage=3283&rft.pages=3283-&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/21-AAP1760&rft_dat=%3Cproquest_cross%3E2727705242%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727705242&rft_id=info:pmid/&rfr_iscdi=true |