Well-posedness and tamed schemes for McKean–Vlasov equations with common noise

In this paper, we first establish well-posedness of McKean–Vlasov stochastic differential equations (McKean–Vlasov SDEs) with common noise, possibly with coefficients of super-linear growth in the state variable. Second, we present stable time-stepping schemes for this class of McKean–Vlasov SDEs. S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2022-10, Vol.32 (5), p.3283
Hauptverfasser: Kumar, Chaman, Neelima, Reisinger, Christoph, Stockinger, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 3283
container_title The Annals of applied probability
container_volume 32
creator Kumar, Chaman
Neelima
Reisinger, Christoph
Stockinger, Wolfgang
description In this paper, we first establish well-posedness of McKean–Vlasov stochastic differential equations (McKean–Vlasov SDEs) with common noise, possibly with coefficients of super-linear growth in the state variable. Second, we present stable time-stepping schemes for this class of McKean–Vlasov SDEs. Specifically, we propose an explicit tamed Euler and tamed Milstein scheme for an interacting particle system associated with the McKean–Vlasov equation. We prove stability and strong convergence of order 1 / 2 and 1, respectively. To obtain our main results, we employ techniques from calculus on the Wasserstein space. The proof for the strong convergence of the tamed Milstein scheme only requires the coefficients to be once continuously differentiable in the state and measure component. To demonstrate our theoretical findings, we present several numerical examples, including mean-field versions of the stochastic 3 / 2 volatility model and the stochastic double well dynamics with multiplicative noise.
doi_str_mv 10.1214/21-AAP1760
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2727705242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2727705242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-ebb32c46d661d90e670c03b30ff304f36884e159fcd1c0586c85c8f1284e8a7f3</originalsourceid><addsrcrecordid>eNotkMtKAzEYhYMoWKsbnyDgThj9k8wkmWUp3rBiF16WQ5r5Q6fMJG0yVdz5Dr6hT-JIuzpw-DgHPkLOGVwxzvJrzrLJZM6UhAMy4kzqTCuhDsmIQQFZwWR-TE5SWgFAmZdqRObv2LbZOiSsPaZEja9pbzqsabJL7DBRFyJ9so9o_O_3z1trUviguNmavgk-0c-mX1Ibui546kOT8JQcOdMmPNvnmLze3rxM77PZ893DdDLLLC-LPsPFQnCby1pKVpeAUoEFsRDgnIDcCal1jqwona2ZhUJLqwurHeNDrY1yYkwudrvrGDZbTH21Ctvoh8uKK64UFDznA3W5o2wMKUV01To2nYlfFYPq31jFWbU3Jv4AgrJeTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727705242</pqid></control><display><type>article</type><title>Well-posedness and tamed schemes for McKean–Vlasov equations with common noise</title><source>Project Euclid Complete</source><creator>Kumar, Chaman ; Neelima ; Reisinger, Christoph ; Stockinger, Wolfgang</creator><creatorcontrib>Kumar, Chaman ; Neelima ; Reisinger, Christoph ; Stockinger, Wolfgang</creatorcontrib><description>In this paper, we first establish well-posedness of McKean–Vlasov stochastic differential equations (McKean–Vlasov SDEs) with common noise, possibly with coefficients of super-linear growth in the state variable. Second, we present stable time-stepping schemes for this class of McKean–Vlasov SDEs. Specifically, we propose an explicit tamed Euler and tamed Milstein scheme for an interacting particle system associated with the McKean–Vlasov equation. We prove stability and strong convergence of order 1 / 2 and 1, respectively. To obtain our main results, we employ techniques from calculus on the Wasserstein space. The proof for the strong convergence of the tamed Milstein scheme only requires the coefficients to be once continuously differentiable in the state and measure component. To demonstrate our theoretical findings, we present several numerical examples, including mean-field versions of the stochastic 3 / 2 volatility model and the stochastic double well dynamics with multiplicative noise.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/21-AAP1760</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Convergence ; Differential equations ; Nonlinear equations ; Numerical analysis ; Stochastic models ; Vlasov equations ; Well posed problems</subject><ispartof>The Annals of applied probability, 2022-10, Vol.32 (5), p.3283</ispartof><rights>Copyright Institute of Mathematical Statistics Oct 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-ebb32c46d661d90e670c03b30ff304f36884e159fcd1c0586c85c8f1284e8a7f3</citedby><cites>FETCH-LOGICAL-c295t-ebb32c46d661d90e670c03b30ff304f36884e159fcd1c0586c85c8f1284e8a7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Kumar, Chaman</creatorcontrib><creatorcontrib>Neelima</creatorcontrib><creatorcontrib>Reisinger, Christoph</creatorcontrib><creatorcontrib>Stockinger, Wolfgang</creatorcontrib><title>Well-posedness and tamed schemes for McKean–Vlasov equations with common noise</title><title>The Annals of applied probability</title><description>In this paper, we first establish well-posedness of McKean–Vlasov stochastic differential equations (McKean–Vlasov SDEs) with common noise, possibly with coefficients of super-linear growth in the state variable. Second, we present stable time-stepping schemes for this class of McKean–Vlasov SDEs. Specifically, we propose an explicit tamed Euler and tamed Milstein scheme for an interacting particle system associated with the McKean–Vlasov equation. We prove stability and strong convergence of order 1 / 2 and 1, respectively. To obtain our main results, we employ techniques from calculus on the Wasserstein space. The proof for the strong convergence of the tamed Milstein scheme only requires the coefficients to be once continuously differentiable in the state and measure component. To demonstrate our theoretical findings, we present several numerical examples, including mean-field versions of the stochastic 3 / 2 volatility model and the stochastic double well dynamics with multiplicative noise.</description><subject>Convergence</subject><subject>Differential equations</subject><subject>Nonlinear equations</subject><subject>Numerical analysis</subject><subject>Stochastic models</subject><subject>Vlasov equations</subject><subject>Well posed problems</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkMtKAzEYhYMoWKsbnyDgThj9k8wkmWUp3rBiF16WQ5r5Q6fMJG0yVdz5Dr6hT-JIuzpw-DgHPkLOGVwxzvJrzrLJZM6UhAMy4kzqTCuhDsmIQQFZwWR-TE5SWgFAmZdqRObv2LbZOiSsPaZEja9pbzqsabJL7DBRFyJ9so9o_O_3z1trUviguNmavgk-0c-mX1Ibui546kOT8JQcOdMmPNvnmLze3rxM77PZ893DdDLLLC-LPsPFQnCby1pKVpeAUoEFsRDgnIDcCal1jqwona2ZhUJLqwurHeNDrY1yYkwudrvrGDZbTH21Ctvoh8uKK64UFDznA3W5o2wMKUV01To2nYlfFYPq31jFWbU3Jv4AgrJeTA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Kumar, Chaman</creator><creator>Neelima</creator><creator>Reisinger, Christoph</creator><creator>Stockinger, Wolfgang</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20221001</creationdate><title>Well-posedness and tamed schemes for McKean–Vlasov equations with common noise</title><author>Kumar, Chaman ; Neelima ; Reisinger, Christoph ; Stockinger, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-ebb32c46d661d90e670c03b30ff304f36884e159fcd1c0586c85c8f1284e8a7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convergence</topic><topic>Differential equations</topic><topic>Nonlinear equations</topic><topic>Numerical analysis</topic><topic>Stochastic models</topic><topic>Vlasov equations</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Chaman</creatorcontrib><creatorcontrib>Neelima</creatorcontrib><creatorcontrib>Reisinger, Christoph</creatorcontrib><creatorcontrib>Stockinger, Wolfgang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Chaman</au><au>Neelima</au><au>Reisinger, Christoph</au><au>Stockinger, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Well-posedness and tamed schemes for McKean–Vlasov equations with common noise</atitle><jtitle>The Annals of applied probability</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>32</volume><issue>5</issue><spage>3283</spage><pages>3283-</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>In this paper, we first establish well-posedness of McKean–Vlasov stochastic differential equations (McKean–Vlasov SDEs) with common noise, possibly with coefficients of super-linear growth in the state variable. Second, we present stable time-stepping schemes for this class of McKean–Vlasov SDEs. Specifically, we propose an explicit tamed Euler and tamed Milstein scheme for an interacting particle system associated with the McKean–Vlasov equation. We prove stability and strong convergence of order 1 / 2 and 1, respectively. To obtain our main results, we employ techniques from calculus on the Wasserstein space. The proof for the strong convergence of the tamed Milstein scheme only requires the coefficients to be once continuously differentiable in the state and measure component. To demonstrate our theoretical findings, we present several numerical examples, including mean-field versions of the stochastic 3 / 2 volatility model and the stochastic double well dynamics with multiplicative noise.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/21-AAP1760</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-5164
ispartof The Annals of applied probability, 2022-10, Vol.32 (5), p.3283
issn 1050-5164
2168-8737
language eng
recordid cdi_proquest_journals_2727705242
source Project Euclid Complete
subjects Convergence
Differential equations
Nonlinear equations
Numerical analysis
Stochastic models
Vlasov equations
Well posed problems
title Well-posedness and tamed schemes for McKean–Vlasov equations with common noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A00%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Well-posedness%20and%20tamed%20schemes%20for%20McKean%E2%80%93Vlasov%20equations%20with%20common%20noise&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Kumar,%20Chaman&rft.date=2022-10-01&rft.volume=32&rft.issue=5&rft.spage=3283&rft.pages=3283-&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/21-AAP1760&rft_dat=%3Cproquest_cross%3E2727705242%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727705242&rft_id=info:pmid/&rfr_iscdi=true