SOLVING THE PROBLEM OF ELECTRO-MAGNETO-ELASTIC BENDING OF A MULTIPLY CONNECTED PLATE

The problem of bending of a plate with arbitrary holes and cracks is solved with the use of complex potentials of the theory of bending of thin electro-magneto-elastic plates. Moreover, with the help of conformal mappings, expansion of holomorphic functions into the Laurent series or Faber polynomia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mechanics and technical physics 2022-08, Vol.63 (4), p.676-687
Hauptverfasser: Kaloerov, S. A., Seroshtanov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 687
container_issue 4
container_start_page 676
container_title Journal of applied mechanics and technical physics
container_volume 63
creator Kaloerov, S. A.
Seroshtanov, A. V.
description The problem of bending of a plate with arbitrary holes and cracks is solved with the use of complex potentials of the theory of bending of thin electro-magneto-elastic plates. Moreover, with the help of conformal mappings, expansion of holomorphic functions into the Laurent series or Faber polynomials owing to satisfaction of boundary conditions by the generalized least squares method, the problem is reduced to an overdetermined system of linear algebraic equations, which is then solved by the method of singular value decomposition. Results of numerical investigations for a plate with two elliptical holes or cracks and for a plate with a hole and a crack (including an edge crack) are reported. The influence of physical and mechanical properties of the plate material and geometric characteristics of holes and cracks on the basic characteristics of the electro-magneto-elastic state is studied.
doi_str_mv 10.1134/S0021894422040150
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2727218037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2727218037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-6025b8c02ee5a8cad895ac5aa25bf1d0a146611c714fa481993190454a0b3a6f3</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFZ_gLcFz6szm02yOabptg1sk9JuBU9hmyZi0bYm7cF_74YIHkTmMDDve2_gEXKP8IjoiacVAEcZCcE5CEAfLsgA_dBjMuBwSQadzDr9mty07Q4AIonhgJhVrp_TbErNTNHFMh9pNaf5hCqtErPM2TyeZsrkTOl4ZdKEjlQ27nCHxHS-1iZd6Bea5FnmeDWmCx0bdUuuavveVnc_e0jWE2WSGdP5NE1izUqM5IkFwP2NLIFXlW9labcy8m3pW-vONW7BoggCxDJEUVshMYo8jED4wsLGs0HtDclDn3tsDp_nqj0Vu8O52buXBQ_doAQvdBT2VNkc2rap6uLYvH3Y5qtAKLryij_lOQ_vPa1j969V85v8v-kbqqRnVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727218037</pqid></control><display><type>article</type><title>SOLVING THE PROBLEM OF ELECTRO-MAGNETO-ELASTIC BENDING OF A MULTIPLY CONNECTED PLATE</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kaloerov, S. A. ; Seroshtanov, A. V.</creator><creatorcontrib>Kaloerov, S. A. ; Seroshtanov, A. V.</creatorcontrib><description>The problem of bending of a plate with arbitrary holes and cracks is solved with the use of complex potentials of the theory of bending of thin electro-magneto-elastic plates. Moreover, with the help of conformal mappings, expansion of holomorphic functions into the Laurent series or Faber polynomials owing to satisfaction of boundary conditions by the generalized least squares method, the problem is reduced to an overdetermined system of linear algebraic equations, which is then solved by the method of singular value decomposition. Results of numerical investigations for a plate with two elliptical holes or cracks and for a plate with a hole and a crack (including an edge crack) are reported. The influence of physical and mechanical properties of the plate material and geometric characteristics of holes and cracks on the basic characteristics of the electro-magneto-elastic state is studied.</description><identifier>ISSN: 0021-8944</identifier><identifier>EISSN: 1573-8620</identifier><identifier>DOI: 10.1134/S0021894422040150</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analytic functions ; Applications of Mathematics ; Boundary conditions ; Classical and Continuum Physics ; Classical Mechanics ; Conformal mapping ; Edge cracks ; Elastic bending ; Elastic plates ; Fluid- and Aerodynamics ; Least squares method ; Linear algebra ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Mechanical Engineering ; Mechanical properties ; Physical properties ; Physics ; Physics and Astronomy ; Plate material ; Polynomials ; Singular value decomposition</subject><ispartof>Journal of applied mechanics and technical physics, 2022-08, Vol.63 (4), p.676-687</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-6025b8c02ee5a8cad895ac5aa25bf1d0a146611c714fa481993190454a0b3a6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021894422040150$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021894422040150$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Kaloerov, S. A.</creatorcontrib><creatorcontrib>Seroshtanov, A. V.</creatorcontrib><title>SOLVING THE PROBLEM OF ELECTRO-MAGNETO-ELASTIC BENDING OF A MULTIPLY CONNECTED PLATE</title><title>Journal of applied mechanics and technical physics</title><addtitle>J Appl Mech Tech Phy</addtitle><description>The problem of bending of a plate with arbitrary holes and cracks is solved with the use of complex potentials of the theory of bending of thin electro-magneto-elastic plates. Moreover, with the help of conformal mappings, expansion of holomorphic functions into the Laurent series or Faber polynomials owing to satisfaction of boundary conditions by the generalized least squares method, the problem is reduced to an overdetermined system of linear algebraic equations, which is then solved by the method of singular value decomposition. Results of numerical investigations for a plate with two elliptical holes or cracks and for a plate with a hole and a crack (including an edge crack) are reported. The influence of physical and mechanical properties of the plate material and geometric characteristics of holes and cracks on the basic characteristics of the electro-magneto-elastic state is studied.</description><subject>Analytic functions</subject><subject>Applications of Mathematics</subject><subject>Boundary conditions</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Conformal mapping</subject><subject>Edge cracks</subject><subject>Elastic bending</subject><subject>Elastic plates</subject><subject>Fluid- and Aerodynamics</subject><subject>Least squares method</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plate material</subject><subject>Polynomials</subject><subject>Singular value decomposition</subject><issn>0021-8944</issn><issn>1573-8620</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQhRdRsFZ_gLcFz6szm02yOabptg1sk9JuBU9hmyZi0bYm7cF_74YIHkTmMDDve2_gEXKP8IjoiacVAEcZCcE5CEAfLsgA_dBjMuBwSQadzDr9mty07Q4AIonhgJhVrp_TbErNTNHFMh9pNaf5hCqtErPM2TyeZsrkTOl4ZdKEjlQ27nCHxHS-1iZd6Bea5FnmeDWmCx0bdUuuavveVnc_e0jWE2WSGdP5NE1izUqM5IkFwP2NLIFXlW9labcy8m3pW-vONW7BoggCxDJEUVshMYo8jED4wsLGs0HtDclDn3tsDp_nqj0Vu8O52buXBQ_doAQvdBT2VNkc2rap6uLYvH3Y5qtAKLryij_lOQ_vPa1j969V85v8v-kbqqRnVw</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Kaloerov, S. A.</creator><creator>Seroshtanov, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220801</creationdate><title>SOLVING THE PROBLEM OF ELECTRO-MAGNETO-ELASTIC BENDING OF A MULTIPLY CONNECTED PLATE</title><author>Kaloerov, S. A. ; Seroshtanov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-6025b8c02ee5a8cad895ac5aa25bf1d0a146611c714fa481993190454a0b3a6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytic functions</topic><topic>Applications of Mathematics</topic><topic>Boundary conditions</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Conformal mapping</topic><topic>Edge cracks</topic><topic>Elastic bending</topic><topic>Elastic plates</topic><topic>Fluid- and Aerodynamics</topic><topic>Least squares method</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plate material</topic><topic>Polynomials</topic><topic>Singular value decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaloerov, S. A.</creatorcontrib><creatorcontrib>Seroshtanov, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied mechanics and technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaloerov, S. A.</au><au>Seroshtanov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SOLVING THE PROBLEM OF ELECTRO-MAGNETO-ELASTIC BENDING OF A MULTIPLY CONNECTED PLATE</atitle><jtitle>Journal of applied mechanics and technical physics</jtitle><stitle>J Appl Mech Tech Phy</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>63</volume><issue>4</issue><spage>676</spage><epage>687</epage><pages>676-687</pages><issn>0021-8944</issn><eissn>1573-8620</eissn><abstract>The problem of bending of a plate with arbitrary holes and cracks is solved with the use of complex potentials of the theory of bending of thin electro-magneto-elastic plates. Moreover, with the help of conformal mappings, expansion of holomorphic functions into the Laurent series or Faber polynomials owing to satisfaction of boundary conditions by the generalized least squares method, the problem is reduced to an overdetermined system of linear algebraic equations, which is then solved by the method of singular value decomposition. Results of numerical investigations for a plate with two elliptical holes or cracks and for a plate with a hole and a crack (including an edge crack) are reported. The influence of physical and mechanical properties of the plate material and geometric characteristics of holes and cracks on the basic characteristics of the electro-magneto-elastic state is studied.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021894422040150</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8944
ispartof Journal of applied mechanics and technical physics, 2022-08, Vol.63 (4), p.676-687
issn 0021-8944
1573-8620
language eng
recordid cdi_proquest_journals_2727218037
source SpringerLink Journals - AutoHoldings
subjects Analytic functions
Applications of Mathematics
Boundary conditions
Classical and Continuum Physics
Classical Mechanics
Conformal mapping
Edge cracks
Elastic bending
Elastic plates
Fluid- and Aerodynamics
Least squares method
Linear algebra
Mathematical analysis
Mathematical Modeling and Industrial Mathematics
Mechanical Engineering
Mechanical properties
Physical properties
Physics
Physics and Astronomy
Plate material
Polynomials
Singular value decomposition
title SOLVING THE PROBLEM OF ELECTRO-MAGNETO-ELASTIC BENDING OF A MULTIPLY CONNECTED PLATE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SOLVING%20THE%20PROBLEM%20OF%20ELECTRO-MAGNETO-ELASTIC%20BENDING%20OF%20A%20MULTIPLY%20CONNECTED%20PLATE&rft.jtitle=Journal%20of%20applied%20mechanics%20and%20technical%20physics&rft.au=Kaloerov,%20S.%20A.&rft.date=2022-08-01&rft.volume=63&rft.issue=4&rft.spage=676&rft.epage=687&rft.pages=676-687&rft.issn=0021-8944&rft.eissn=1573-8620&rft_id=info:doi/10.1134/S0021894422040150&rft_dat=%3Cproquest_cross%3E2727218037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727218037&rft_id=info:pmid/&rfr_iscdi=true