Cluster sets theorems on metric measure spaces
We generalize some theorems of Tsuji and Iversen concerning cluster sets of plane holomorphic mappings to the class of open, light mappings between metric measure spaces and satisfying generalized modular inequalities. We also generalize in this class some results of Vuorinen concerning asymptotic v...
Gespeichert in:
Veröffentlicht in: | Analysis and mathematical physics 2022-12, Vol.12 (6), Article 139 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Analysis and mathematical physics |
container_volume | 12 |
creator | Cristea, Mihai |
description | We generalize some theorems of Tsuji and Iversen concerning cluster sets of plane holomorphic mappings to the class of open, light mappings between metric measure spaces and satisfying generalized modular inequalities. We also generalize in this class some results of Vuorinen concerning asymptotic values and extension of continuity for quasiregular mappings. |
doi_str_mv | 10.1007/s13324-022-00739-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2727217906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2727217906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-7c9609629dc6da5ae566780f4ff2878a73b1734e543408e481d29c3eb5e1b89a3</originalsourceid><addsrcrecordid>eNp9kEtLA0EQhAdRMMT8AU8Lnif2PHYeRwk-AgEvCt6GyaRXE5JsnN4l-O8dXdGb9KG6oaoaPsYuBUwFgL0moZTUHKTk5VSeH0_YSBijuVT1y-nvbtw5mxBtAEDo2mhjR2w62_bUYa4IO6q6N2wz7qhq99UOu7xORSL1GSs6xIR0wc6auCWc_OiYPd_dPs0e-OLxfj67WfAkATpukzfgjfSrZFaxjlgbYx00ummksy5atRRWaay10uBQO7GSPilc1iiWzkc1ZldD7yG37z1SFzZtn_flZZC2jLAeTHHJwZVyS5SxCYe83sX8EQSELzRhQBMKmvCNJhxLSA0hKub9K-a_6n9SnzPeZXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727217906</pqid></control><display><type>article</type><title>Cluster sets theorems on metric measure spaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cristea, Mihai</creator><creatorcontrib>Cristea, Mihai</creatorcontrib><description>We generalize some theorems of Tsuji and Iversen concerning cluster sets of plane holomorphic mappings to the class of open, light mappings between metric measure spaces and satisfying generalized modular inequalities. We also generalize in this class some results of Vuorinen concerning asymptotic values and extension of continuity for quasiregular mappings.</description><identifier>ISSN: 1664-2368</identifier><identifier>EISSN: 1664-235X</identifier><identifier>DOI: 10.1007/s13324-022-00739-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Clusters ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Theorems</subject><ispartof>Analysis and mathematical physics, 2022-12, Vol.12 (6), Article 139</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-7c9609629dc6da5ae566780f4ff2878a73b1734e543408e481d29c3eb5e1b89a3</cites><orcidid>0000-0002-2766-8356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13324-022-00739-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13324-022-00739-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cristea, Mihai</creatorcontrib><title>Cluster sets theorems on metric measure spaces</title><title>Analysis and mathematical physics</title><addtitle>Anal.Math.Phys</addtitle><description>We generalize some theorems of Tsuji and Iversen concerning cluster sets of plane holomorphic mappings to the class of open, light mappings between metric measure spaces and satisfying generalized modular inequalities. We also generalize in this class some results of Vuorinen concerning asymptotic values and extension of continuity for quasiregular mappings.</description><subject>Analysis</subject><subject>Clusters</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theorems</subject><issn>1664-2368</issn><issn>1664-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLA0EQhAdRMMT8AU8Lnif2PHYeRwk-AgEvCt6GyaRXE5JsnN4l-O8dXdGb9KG6oaoaPsYuBUwFgL0moZTUHKTk5VSeH0_YSBijuVT1y-nvbtw5mxBtAEDo2mhjR2w62_bUYa4IO6q6N2wz7qhq99UOu7xORSL1GSs6xIR0wc6auCWc_OiYPd_dPs0e-OLxfj67WfAkATpukzfgjfSrZFaxjlgbYx00ummksy5atRRWaay10uBQO7GSPilc1iiWzkc1ZldD7yG37z1SFzZtn_flZZC2jLAeTHHJwZVyS5SxCYe83sX8EQSELzRhQBMKmvCNJhxLSA0hKub9K-a_6n9SnzPeZXA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Cristea, Mihai</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2766-8356</orcidid></search><sort><creationdate>20221201</creationdate><title>Cluster sets theorems on metric measure spaces</title><author>Cristea, Mihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-7c9609629dc6da5ae566780f4ff2878a73b1734e543408e481d29c3eb5e1b89a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Clusters</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cristea, Mihai</creatorcontrib><collection>CrossRef</collection><jtitle>Analysis and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cristea, Mihai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cluster sets theorems on metric measure spaces</atitle><jtitle>Analysis and mathematical physics</jtitle><stitle>Anal.Math.Phys</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>12</volume><issue>6</issue><artnum>139</artnum><issn>1664-2368</issn><eissn>1664-235X</eissn><abstract>We generalize some theorems of Tsuji and Iversen concerning cluster sets of plane holomorphic mappings to the class of open, light mappings between metric measure spaces and satisfying generalized modular inequalities. We also generalize in this class some results of Vuorinen concerning asymptotic values and extension of continuity for quasiregular mappings.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13324-022-00739-w</doi><orcidid>https://orcid.org/0000-0002-2766-8356</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-2368 |
ispartof | Analysis and mathematical physics, 2022-12, Vol.12 (6), Article 139 |
issn | 1664-2368 1664-235X |
language | eng |
recordid | cdi_proquest_journals_2727217906 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Clusters Mathematical Methods in Physics Mathematics Mathematics and Statistics Theorems |
title | Cluster sets theorems on metric measure spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cluster%20sets%20theorems%20on%20metric%20measure%20spaces&rft.jtitle=Analysis%20and%20mathematical%20physics&rft.au=Cristea,%20Mihai&rft.date=2022-12-01&rft.volume=12&rft.issue=6&rft.artnum=139&rft.issn=1664-2368&rft.eissn=1664-235X&rft_id=info:doi/10.1007/s13324-022-00739-w&rft_dat=%3Cproquest_cross%3E2727217906%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727217906&rft_id=info:pmid/&rfr_iscdi=true |