Numerical modelling of thermal quantities for improving remote laser welding process capability space with consideration to beam oscillation
This research aims to explore the impact of welding process parameters and beam oscillation on weld thermal cycle during laser welding. A three-dimensional heat transfer model is developed to simulate the welding process, based on finite element method. The results obtained from the model pertaining...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2022-11, Vol.123 (3-4), p.761-782 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 782 |
---|---|
container_issue | 3-4 |
container_start_page | 761 |
container_title | International journal of advanced manufacturing technology |
container_volume | 123 |
creator | Mohan, Anand Ceglarek, Dariusz Auinger, Michael |
description | This research aims to explore the impact of welding process parameters and beam oscillation on weld thermal cycle during laser welding. A three-dimensional heat transfer model is developed to simulate the welding process, based on finite element method. The results obtained from the model pertaining to thermal cycle and weld morphology are in good agreement with experimental results found in the literature. The developed heat transfer model can quantify the effect of welding process parameters (i.e. heat source power, welding speed, radius of oscillation, and frequecy of oscillation) on the intermediate performance indicators (IPIs) (i.e. peak temperature, heat-affected zone (HAZ) volume, and cooling rate). Parametric contour maps for peak temperature, HAZ volume, and cooling rate are developed for the estimation of the process capability space. An integrated approach for rapid process assessment, and process capability space refinement, based on IPIs is proposed. The process capability space will guide the identification of the initial welding process parameters window and helps in reducing the number of experiments required by refining the process parameters based on the interactions with the IPIs. Among the IPIs, the peak temperature indicates the mode of welding while the HAZ volume and cooling rate represent weld quality. The regression relationship between the welding process parameters and the IPIs is established for quick estimation of IPIs to replace time-consuming numerical simulations. The application of beam oscillation widens the process capability space, making the process parameter selection more flexible due to the increase in distance from the tolerance boundaries. |
doi_str_mv | 10.1007/s00170-022-10182-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2727081391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2727081391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-98fda0ddef82f232360ae97758fd90dd0df4b6c35f1892888687bc344b2694cc3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgejSX6SSzFPEGRTe6DpnMSZuSmdQktfQdfGhTK7hzdeA7338SfoQuKbmmhIibRAgVpCKMVZRQySpxhCa05rzihM6O0YSwRlZcNPIUnaW0KnpDGzlBXy-bAaIz2uMh9OC9Gxc4WJyXEIcCPzZ6zC47SNiGiN2wjuFz70QYQgbsdYKIt-D7PSxLAylho9e6c97lHU5rbQBvXV5iE8bkeog6uzDiHHAHesAhGef9DztHJ1b7BBe_c4reH-7f7p6q-evj893tvDKs5blqpe016XuwklnGGW-IhlaIWeFt4aS3ddcYPrNUtkxK2UjRGV7XHWva2hg-RVeHu-W_HxtIWa3CJo7lScUEE0RS3tJisYNlYkgpglXr6AYdd4oStW9dHVpXpXX107oSJcQPoVTkcQHx7_Q_qW9ea4jL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727081391</pqid></control><display><type>article</type><title>Numerical modelling of thermal quantities for improving remote laser welding process capability space with consideration to beam oscillation</title><source>SpringerLink Journals</source><creator>Mohan, Anand ; Ceglarek, Dariusz ; Auinger, Michael</creator><creatorcontrib>Mohan, Anand ; Ceglarek, Dariusz ; Auinger, Michael</creatorcontrib><description>This research aims to explore the impact of welding process parameters and beam oscillation on weld thermal cycle during laser welding. A three-dimensional heat transfer model is developed to simulate the welding process, based on finite element method. The results obtained from the model pertaining to thermal cycle and weld morphology are in good agreement with experimental results found in the literature. The developed heat transfer model can quantify the effect of welding process parameters (i.e. heat source power, welding speed, radius of oscillation, and frequecy of oscillation) on the intermediate performance indicators (IPIs) (i.e. peak temperature, heat-affected zone (HAZ) volume, and cooling rate). Parametric contour maps for peak temperature, HAZ volume, and cooling rate are developed for the estimation of the process capability space. An integrated approach for rapid process assessment, and process capability space refinement, based on IPIs is proposed. The process capability space will guide the identification of the initial welding process parameters window and helps in reducing the number of experiments required by refining the process parameters based on the interactions with the IPIs. Among the IPIs, the peak temperature indicates the mode of welding while the HAZ volume and cooling rate represent weld quality. The regression relationship between the welding process parameters and the IPIs is established for quick estimation of IPIs to replace time-consuming numerical simulations. The application of beam oscillation widens the process capability space, making the process parameter selection more flexible due to the increase in distance from the tolerance boundaries.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-022-10182-7</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Computer simulation ; Computer-Aided Engineering (CAD ; Cooling ; Cooling rate ; Engineering ; Finite element method ; Heat ; Heat affected zone ; Heat transfer ; Industrial and Production Engineering ; Laser beam welding ; Mathematical models ; Mechanical Engineering ; Media Management ; Original Article ; Parameter identification ; Process management ; Process parameters ; Three dimensional models ; Welding parameters</subject><ispartof>International journal of advanced manufacturing technology, 2022-11, Vol.123 (3-4), p.761-782</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-98fda0ddef82f232360ae97758fd90dd0df4b6c35f1892888687bc344b2694cc3</citedby><cites>FETCH-LOGICAL-c293t-98fda0ddef82f232360ae97758fd90dd0df4b6c35f1892888687bc344b2694cc3</cites><orcidid>0000-0002-8720-2777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-022-10182-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-022-10182-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Mohan, Anand</creatorcontrib><creatorcontrib>Ceglarek, Dariusz</creatorcontrib><creatorcontrib>Auinger, Michael</creatorcontrib><title>Numerical modelling of thermal quantities for improving remote laser welding process capability space with consideration to beam oscillation</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>This research aims to explore the impact of welding process parameters and beam oscillation on weld thermal cycle during laser welding. A three-dimensional heat transfer model is developed to simulate the welding process, based on finite element method. The results obtained from the model pertaining to thermal cycle and weld morphology are in good agreement with experimental results found in the literature. The developed heat transfer model can quantify the effect of welding process parameters (i.e. heat source power, welding speed, radius of oscillation, and frequecy of oscillation) on the intermediate performance indicators (IPIs) (i.e. peak temperature, heat-affected zone (HAZ) volume, and cooling rate). Parametric contour maps for peak temperature, HAZ volume, and cooling rate are developed for the estimation of the process capability space. An integrated approach for rapid process assessment, and process capability space refinement, based on IPIs is proposed. The process capability space will guide the identification of the initial welding process parameters window and helps in reducing the number of experiments required by refining the process parameters based on the interactions with the IPIs. Among the IPIs, the peak temperature indicates the mode of welding while the HAZ volume and cooling rate represent weld quality. The regression relationship between the welding process parameters and the IPIs is established for quick estimation of IPIs to replace time-consuming numerical simulations. The application of beam oscillation widens the process capability space, making the process parameter selection more flexible due to the increase in distance from the tolerance boundaries.</description><subject>CAE) and Design</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Heat</subject><subject>Heat affected zone</subject><subject>Heat transfer</subject><subject>Industrial and Production Engineering</subject><subject>Laser beam welding</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Parameter identification</subject><subject>Process management</subject><subject>Process parameters</subject><subject>Three dimensional models</subject><subject>Welding parameters</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4CrgejSX6SSzFPEGRTe6DpnMSZuSmdQktfQdfGhTK7hzdeA7338SfoQuKbmmhIibRAgVpCKMVZRQySpxhCa05rzihM6O0YSwRlZcNPIUnaW0KnpDGzlBXy-bAaIz2uMh9OC9Gxc4WJyXEIcCPzZ6zC47SNiGiN2wjuFz70QYQgbsdYKIt-D7PSxLAylho9e6c97lHU5rbQBvXV5iE8bkeog6uzDiHHAHesAhGef9DztHJ1b7BBe_c4reH-7f7p6q-evj893tvDKs5blqpe016XuwklnGGW-IhlaIWeFt4aS3ddcYPrNUtkxK2UjRGV7XHWva2hg-RVeHu-W_HxtIWa3CJo7lScUEE0RS3tJisYNlYkgpglXr6AYdd4oStW9dHVpXpXX107oSJcQPoVTkcQHx7_Q_qW9ea4jL</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Mohan, Anand</creator><creator>Ceglarek, Dariusz</creator><creator>Auinger, Michael</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8720-2777</orcidid></search><sort><creationdate>20221101</creationdate><title>Numerical modelling of thermal quantities for improving remote laser welding process capability space with consideration to beam oscillation</title><author>Mohan, Anand ; Ceglarek, Dariusz ; Auinger, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-98fda0ddef82f232360ae97758fd90dd0df4b6c35f1892888687bc344b2694cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CAE) and Design</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Heat</topic><topic>Heat affected zone</topic><topic>Heat transfer</topic><topic>Industrial and Production Engineering</topic><topic>Laser beam welding</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Parameter identification</topic><topic>Process management</topic><topic>Process parameters</topic><topic>Three dimensional models</topic><topic>Welding parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohan, Anand</creatorcontrib><creatorcontrib>Ceglarek, Dariusz</creatorcontrib><creatorcontrib>Auinger, Michael</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohan, Anand</au><au>Ceglarek, Dariusz</au><au>Auinger, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical modelling of thermal quantities for improving remote laser welding process capability space with consideration to beam oscillation</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>123</volume><issue>3-4</issue><spage>761</spage><epage>782</epage><pages>761-782</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>This research aims to explore the impact of welding process parameters and beam oscillation on weld thermal cycle during laser welding. A three-dimensional heat transfer model is developed to simulate the welding process, based on finite element method. The results obtained from the model pertaining to thermal cycle and weld morphology are in good agreement with experimental results found in the literature. The developed heat transfer model can quantify the effect of welding process parameters (i.e. heat source power, welding speed, radius of oscillation, and frequecy of oscillation) on the intermediate performance indicators (IPIs) (i.e. peak temperature, heat-affected zone (HAZ) volume, and cooling rate). Parametric contour maps for peak temperature, HAZ volume, and cooling rate are developed for the estimation of the process capability space. An integrated approach for rapid process assessment, and process capability space refinement, based on IPIs is proposed. The process capability space will guide the identification of the initial welding process parameters window and helps in reducing the number of experiments required by refining the process parameters based on the interactions with the IPIs. Among the IPIs, the peak temperature indicates the mode of welding while the HAZ volume and cooling rate represent weld quality. The regression relationship between the welding process parameters and the IPIs is established for quick estimation of IPIs to replace time-consuming numerical simulations. The application of beam oscillation widens the process capability space, making the process parameter selection more flexible due to the increase in distance from the tolerance boundaries.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-022-10182-7</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-8720-2777</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2022-11, Vol.123 (3-4), p.761-782 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2727081391 |
source | SpringerLink Journals |
subjects | CAE) and Design Computer simulation Computer-Aided Engineering (CAD Cooling Cooling rate Engineering Finite element method Heat Heat affected zone Heat transfer Industrial and Production Engineering Laser beam welding Mathematical models Mechanical Engineering Media Management Original Article Parameter identification Process management Process parameters Three dimensional models Welding parameters |
title | Numerical modelling of thermal quantities for improving remote laser welding process capability space with consideration to beam oscillation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20modelling%20of%20thermal%20quantities%20for%20improving%20remote%20laser%20welding%20process%20capability%20space%20with%20consideration%20to%20beam%20oscillation&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Mohan,%20Anand&rft.date=2022-11-01&rft.volume=123&rft.issue=3-4&rft.spage=761&rft.epage=782&rft.pages=761-782&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-022-10182-7&rft_dat=%3Cproquest_cross%3E2727081391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727081391&rft_id=info:pmid/&rfr_iscdi=true |