Adaptive Detection in Partially Homogeneous Environment with Limited Samples Based on Geometric Barycenters

To solve the problem of adaptive detection in partially homogeneous environment with outliers and limited samples, a class of two-step detectors are designed based on geometric barycenters. The first step is to construct a data selector based on generalized inner product and eliminate sample data co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2022, Vol.29, p.1-5
Hauptverfasser: Ye, Hang, Wang, Yong-Liang, Liu, Weijian, Liu, Jun, Chen, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE signal processing letters
container_volume 29
creator Ye, Hang
Wang, Yong-Liang
Liu, Weijian
Liu, Jun
Chen, Hui
description To solve the problem of adaptive detection in partially homogeneous environment with outliers and limited samples, a class of two-step detectors are designed based on geometric barycenters. The first step is to construct a data selector based on generalized inner product and eliminate sample data containing outliers. The second step is to construct detection statistics of the adaptive coherence estimator using covariance matrix estimators, which are based on geometric barycenters. The detectors utilize geometric barycenters of the positive definite matrix space without any knowledge of prior probability distribution of sample data. The performance of the proposed two-step detectors is evaluated in terms of the probabilities of correct outliers excision, false alarm, and detection. Experiment results, based on simulated and real data, show that the proposed approach has better detection performance than the existing ones based on traditional covariance estimator.
doi_str_mv 10.1109/LSP.2022.3207617
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2727047643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9894693</ieee_id><sourcerecordid>2727047643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-4b2aa376326bd99cca1439a6da9ac67b553307297751887869fa4f509e4e55383</originalsourceid><addsrcrecordid>eNo9kMtLw0AQxoMoWKt3wcuC59R9JPs4Vq2tELBQPYdtMtGtSTbubiv9793S4mle3zcz_JLkluAJIVg9FKvlhGJKJ4xiwYk4S0Ykz2VKGSfnMccCp0pheZlceb_BGEsi81HyPa31EMwO0DMEqIKxPTI9WmoXjG7bPVrYzn5CD3br0azfGWf7DvqAfk34QoXpTIAarXQ3tODRo_axiivmYDsIzlSx5fZVNIDz18lFo1sPN6c4Tj5eZu9Pi7R4m78-TYu0ooqENFtTrZngjPJ1rVRVaZIxpXmtla64WOc5Y1hQJUROpBSSq0ZnTY4VZBBnko2T--PewdmfLfhQbuzW9fFkSQUVOBM8Y1GFj6rKWe8dNOXgTBe_LQkuD0jLiLQ8IC1PSKPl7mgxAPAvV1JlXDH2BwOzcoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727047643</pqid></control><display><type>article</type><title>Adaptive Detection in Partially Homogeneous Environment with Limited Samples Based on Geometric Barycenters</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Hang ; Wang, Yong-Liang ; Liu, Weijian ; Liu, Jun ; Chen, Hui</creator><creatorcontrib>Ye, Hang ; Wang, Yong-Liang ; Liu, Weijian ; Liu, Jun ; Chen, Hui</creatorcontrib><description>To solve the problem of adaptive detection in partially homogeneous environment with outliers and limited samples, a class of two-step detectors are designed based on geometric barycenters. The first step is to construct a data selector based on generalized inner product and eliminate sample data containing outliers. The second step is to construct detection statistics of the adaptive coherence estimator using covariance matrix estimators, which are based on geometric barycenters. The detectors utilize geometric barycenters of the positive definite matrix space without any knowledge of prior probability distribution of sample data. The performance of the proposed two-step detectors is evaluated in terms of the probabilities of correct outliers excision, false alarm, and detection. Experiment results, based on simulated and real data, show that the proposed approach has better detection performance than the existing ones based on traditional covariance estimator.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2022.3207617</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive detection ; Clutter ; Conditional probability ; Covariance matrix ; covariance matrix estimate ; Data analysis ; Detectors ; False alarms ; geometric barycenter ; limited samples ; Mathematical analysis ; Maximum likelihood estimation ; Outliers (statistics) ; partially homogeneous environment ; Radar ; Statistical distributions ; Training ; Training data</subject><ispartof>IEEE signal processing letters, 2022, Vol.29, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-4b2aa376326bd99cca1439a6da9ac67b553307297751887869fa4f509e4e55383</citedby><cites>FETCH-LOGICAL-c291t-4b2aa376326bd99cca1439a6da9ac67b553307297751887869fa4f509e4e55383</cites><orcidid>0000-0003-3887-9500 ; 0000-0002-7193-0622 ; 0000-0002-0201-0726 ; 0000-0002-0330-8073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9894693$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9894693$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ye, Hang</creatorcontrib><creatorcontrib>Wang, Yong-Liang</creatorcontrib><creatorcontrib>Liu, Weijian</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><title>Adaptive Detection in Partially Homogeneous Environment with Limited Samples Based on Geometric Barycenters</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>To solve the problem of adaptive detection in partially homogeneous environment with outliers and limited samples, a class of two-step detectors are designed based on geometric barycenters. The first step is to construct a data selector based on generalized inner product and eliminate sample data containing outliers. The second step is to construct detection statistics of the adaptive coherence estimator using covariance matrix estimators, which are based on geometric barycenters. The detectors utilize geometric barycenters of the positive definite matrix space without any knowledge of prior probability distribution of sample data. The performance of the proposed two-step detectors is evaluated in terms of the probabilities of correct outliers excision, false alarm, and detection. Experiment results, based on simulated and real data, show that the proposed approach has better detection performance than the existing ones based on traditional covariance estimator.</description><subject>Adaptive detection</subject><subject>Clutter</subject><subject>Conditional probability</subject><subject>Covariance matrix</subject><subject>covariance matrix estimate</subject><subject>Data analysis</subject><subject>Detectors</subject><subject>False alarms</subject><subject>geometric barycenter</subject><subject>limited samples</subject><subject>Mathematical analysis</subject><subject>Maximum likelihood estimation</subject><subject>Outliers (statistics)</subject><subject>partially homogeneous environment</subject><subject>Radar</subject><subject>Statistical distributions</subject><subject>Training</subject><subject>Training data</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtLw0AQxoMoWKt3wcuC59R9JPs4Vq2tELBQPYdtMtGtSTbubiv9793S4mle3zcz_JLkluAJIVg9FKvlhGJKJ4xiwYk4S0Ykz2VKGSfnMccCp0pheZlceb_BGEsi81HyPa31EMwO0DMEqIKxPTI9WmoXjG7bPVrYzn5CD3br0azfGWf7DvqAfk34QoXpTIAarXQ3tODRo_axiivmYDsIzlSx5fZVNIDz18lFo1sPN6c4Tj5eZu9Pi7R4m78-TYu0ooqENFtTrZngjPJ1rVRVaZIxpXmtla64WOc5Y1hQJUROpBSSq0ZnTY4VZBBnko2T--PewdmfLfhQbuzW9fFkSQUVOBM8Y1GFj6rKWe8dNOXgTBe_LQkuD0jLiLQ8IC1PSKPl7mgxAPAvV1JlXDH2BwOzcoQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ye, Hang</creator><creator>Wang, Yong-Liang</creator><creator>Liu, Weijian</creator><creator>Liu, Jun</creator><creator>Chen, Hui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3887-9500</orcidid><orcidid>https://orcid.org/0000-0002-7193-0622</orcidid><orcidid>https://orcid.org/0000-0002-0201-0726</orcidid><orcidid>https://orcid.org/0000-0002-0330-8073</orcidid></search><sort><creationdate>2022</creationdate><title>Adaptive Detection in Partially Homogeneous Environment with Limited Samples Based on Geometric Barycenters</title><author>Ye, Hang ; Wang, Yong-Liang ; Liu, Weijian ; Liu, Jun ; Chen, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-4b2aa376326bd99cca1439a6da9ac67b553307297751887869fa4f509e4e55383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive detection</topic><topic>Clutter</topic><topic>Conditional probability</topic><topic>Covariance matrix</topic><topic>covariance matrix estimate</topic><topic>Data analysis</topic><topic>Detectors</topic><topic>False alarms</topic><topic>geometric barycenter</topic><topic>limited samples</topic><topic>Mathematical analysis</topic><topic>Maximum likelihood estimation</topic><topic>Outliers (statistics)</topic><topic>partially homogeneous environment</topic><topic>Radar</topic><topic>Statistical distributions</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Hang</creatorcontrib><creatorcontrib>Wang, Yong-Liang</creatorcontrib><creatorcontrib>Liu, Weijian</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Hang</au><au>Wang, Yong-Liang</au><au>Liu, Weijian</au><au>Liu, Jun</au><au>Chen, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Detection in Partially Homogeneous Environment with Limited Samples Based on Geometric Barycenters</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2022</date><risdate>2022</risdate><volume>29</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>To solve the problem of adaptive detection in partially homogeneous environment with outliers and limited samples, a class of two-step detectors are designed based on geometric barycenters. The first step is to construct a data selector based on generalized inner product and eliminate sample data containing outliers. The second step is to construct detection statistics of the adaptive coherence estimator using covariance matrix estimators, which are based on geometric barycenters. The detectors utilize geometric barycenters of the positive definite matrix space without any knowledge of prior probability distribution of sample data. The performance of the proposed two-step detectors is evaluated in terms of the probabilities of correct outliers excision, false alarm, and detection. Experiment results, based on simulated and real data, show that the proposed approach has better detection performance than the existing ones based on traditional covariance estimator.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2022.3207617</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3887-9500</orcidid><orcidid>https://orcid.org/0000-0002-7193-0622</orcidid><orcidid>https://orcid.org/0000-0002-0201-0726</orcidid><orcidid>https://orcid.org/0000-0002-0330-8073</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2022, Vol.29, p.1-5
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_journals_2727047643
source IEEE Electronic Library (IEL)
subjects Adaptive detection
Clutter
Conditional probability
Covariance matrix
covariance matrix estimate
Data analysis
Detectors
False alarms
geometric barycenter
limited samples
Mathematical analysis
Maximum likelihood estimation
Outliers (statistics)
partially homogeneous environment
Radar
Statistical distributions
Training
Training data
title Adaptive Detection in Partially Homogeneous Environment with Limited Samples Based on Geometric Barycenters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A28%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Detection%20in%20Partially%20Homogeneous%20Environment%20with%20Limited%20Samples%20Based%20on%20Geometric%20Barycenters&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Ye,%20Hang&rft.date=2022&rft.volume=29&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2022.3207617&rft_dat=%3Cproquest_RIE%3E2727047643%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727047643&rft_id=info:pmid/&rft_ieee_id=9894693&rfr_iscdi=true