Adaptive Detection in Partially Homogeneous Environment with Limited Samples Based on Geometric Barycenters
To solve the problem of adaptive detection in partially homogeneous environment with outliers and limited samples, a class of two-step detectors are designed based on geometric barycenters. The first step is to construct a data selector based on generalized inner product and eliminate sample data co...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2022, Vol.29, p.1-5 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE signal processing letters |
container_volume | 29 |
creator | Ye, Hang Wang, Yong-Liang Liu, Weijian Liu, Jun Chen, Hui |
description | To solve the problem of adaptive detection in partially homogeneous environment with outliers and limited samples, a class of two-step detectors are designed based on geometric barycenters. The first step is to construct a data selector based on generalized inner product and eliminate sample data containing outliers. The second step is to construct detection statistics of the adaptive coherence estimator using covariance matrix estimators, which are based on geometric barycenters. The detectors utilize geometric barycenters of the positive definite matrix space without any knowledge of prior probability distribution of sample data. The performance of the proposed two-step detectors is evaluated in terms of the probabilities of correct outliers excision, false alarm, and detection. Experiment results, based on simulated and real data, show that the proposed approach has better detection performance than the existing ones based on traditional covariance estimator. |
doi_str_mv | 10.1109/LSP.2022.3207617 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2727047643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9894693</ieee_id><sourcerecordid>2727047643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-4b2aa376326bd99cca1439a6da9ac67b553307297751887869fa4f509e4e55383</originalsourceid><addsrcrecordid>eNo9kMtLw0AQxoMoWKt3wcuC59R9JPs4Vq2tELBQPYdtMtGtSTbubiv9793S4mle3zcz_JLkluAJIVg9FKvlhGJKJ4xiwYk4S0Ykz2VKGSfnMccCp0pheZlceb_BGEsi81HyPa31EMwO0DMEqIKxPTI9WmoXjG7bPVrYzn5CD3br0azfGWf7DvqAfk34QoXpTIAarXQ3tODRo_axiivmYDsIzlSx5fZVNIDz18lFo1sPN6c4Tj5eZu9Pi7R4m78-TYu0ooqENFtTrZngjPJ1rVRVaZIxpXmtla64WOc5Y1hQJUROpBSSq0ZnTY4VZBBnko2T--PewdmfLfhQbuzW9fFkSQUVOBM8Y1GFj6rKWe8dNOXgTBe_LQkuD0jLiLQ8IC1PSKPl7mgxAPAvV1JlXDH2BwOzcoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727047643</pqid></control><display><type>article</type><title>Adaptive Detection in Partially Homogeneous Environment with Limited Samples Based on Geometric Barycenters</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Hang ; Wang, Yong-Liang ; Liu, Weijian ; Liu, Jun ; Chen, Hui</creator><creatorcontrib>Ye, Hang ; Wang, Yong-Liang ; Liu, Weijian ; Liu, Jun ; Chen, Hui</creatorcontrib><description>To solve the problem of adaptive detection in partially homogeneous environment with outliers and limited samples, a class of two-step detectors are designed based on geometric barycenters. The first step is to construct a data selector based on generalized inner product and eliminate sample data containing outliers. The second step is to construct detection statistics of the adaptive coherence estimator using covariance matrix estimators, which are based on geometric barycenters. The detectors utilize geometric barycenters of the positive definite matrix space without any knowledge of prior probability distribution of sample data. The performance of the proposed two-step detectors is evaluated in terms of the probabilities of correct outliers excision, false alarm, and detection. Experiment results, based on simulated and real data, show that the proposed approach has better detection performance than the existing ones based on traditional covariance estimator.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2022.3207617</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive detection ; Clutter ; Conditional probability ; Covariance matrix ; covariance matrix estimate ; Data analysis ; Detectors ; False alarms ; geometric barycenter ; limited samples ; Mathematical analysis ; Maximum likelihood estimation ; Outliers (statistics) ; partially homogeneous environment ; Radar ; Statistical distributions ; Training ; Training data</subject><ispartof>IEEE signal processing letters, 2022, Vol.29, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-4b2aa376326bd99cca1439a6da9ac67b553307297751887869fa4f509e4e55383</citedby><cites>FETCH-LOGICAL-c291t-4b2aa376326bd99cca1439a6da9ac67b553307297751887869fa4f509e4e55383</cites><orcidid>0000-0003-3887-9500 ; 0000-0002-7193-0622 ; 0000-0002-0201-0726 ; 0000-0002-0330-8073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9894693$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9894693$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ye, Hang</creatorcontrib><creatorcontrib>Wang, Yong-Liang</creatorcontrib><creatorcontrib>Liu, Weijian</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><title>Adaptive Detection in Partially Homogeneous Environment with Limited Samples Based on Geometric Barycenters</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>To solve the problem of adaptive detection in partially homogeneous environment with outliers and limited samples, a class of two-step detectors are designed based on geometric barycenters. The first step is to construct a data selector based on generalized inner product and eliminate sample data containing outliers. The second step is to construct detection statistics of the adaptive coherence estimator using covariance matrix estimators, which are based on geometric barycenters. The detectors utilize geometric barycenters of the positive definite matrix space without any knowledge of prior probability distribution of sample data. The performance of the proposed two-step detectors is evaluated in terms of the probabilities of correct outliers excision, false alarm, and detection. Experiment results, based on simulated and real data, show that the proposed approach has better detection performance than the existing ones based on traditional covariance estimator.</description><subject>Adaptive detection</subject><subject>Clutter</subject><subject>Conditional probability</subject><subject>Covariance matrix</subject><subject>covariance matrix estimate</subject><subject>Data analysis</subject><subject>Detectors</subject><subject>False alarms</subject><subject>geometric barycenter</subject><subject>limited samples</subject><subject>Mathematical analysis</subject><subject>Maximum likelihood estimation</subject><subject>Outliers (statistics)</subject><subject>partially homogeneous environment</subject><subject>Radar</subject><subject>Statistical distributions</subject><subject>Training</subject><subject>Training data</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtLw0AQxoMoWKt3wcuC59R9JPs4Vq2tELBQPYdtMtGtSTbubiv9793S4mle3zcz_JLkluAJIVg9FKvlhGJKJ4xiwYk4S0Ykz2VKGSfnMccCp0pheZlceb_BGEsi81HyPa31EMwO0DMEqIKxPTI9WmoXjG7bPVrYzn5CD3br0azfGWf7DvqAfk34QoXpTIAarXQ3tODRo_axiivmYDsIzlSx5fZVNIDz18lFo1sPN6c4Tj5eZu9Pi7R4m78-TYu0ooqENFtTrZngjPJ1rVRVaZIxpXmtla64WOc5Y1hQJUROpBSSq0ZnTY4VZBBnko2T--PewdmfLfhQbuzW9fFkSQUVOBM8Y1GFj6rKWe8dNOXgTBe_LQkuD0jLiLQ8IC1PSKPl7mgxAPAvV1JlXDH2BwOzcoQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ye, Hang</creator><creator>Wang, Yong-Liang</creator><creator>Liu, Weijian</creator><creator>Liu, Jun</creator><creator>Chen, Hui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3887-9500</orcidid><orcidid>https://orcid.org/0000-0002-7193-0622</orcidid><orcidid>https://orcid.org/0000-0002-0201-0726</orcidid><orcidid>https://orcid.org/0000-0002-0330-8073</orcidid></search><sort><creationdate>2022</creationdate><title>Adaptive Detection in Partially Homogeneous Environment with Limited Samples Based on Geometric Barycenters</title><author>Ye, Hang ; Wang, Yong-Liang ; Liu, Weijian ; Liu, Jun ; Chen, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-4b2aa376326bd99cca1439a6da9ac67b553307297751887869fa4f509e4e55383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive detection</topic><topic>Clutter</topic><topic>Conditional probability</topic><topic>Covariance matrix</topic><topic>covariance matrix estimate</topic><topic>Data analysis</topic><topic>Detectors</topic><topic>False alarms</topic><topic>geometric barycenter</topic><topic>limited samples</topic><topic>Mathematical analysis</topic><topic>Maximum likelihood estimation</topic><topic>Outliers (statistics)</topic><topic>partially homogeneous environment</topic><topic>Radar</topic><topic>Statistical distributions</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Hang</creatorcontrib><creatorcontrib>Wang, Yong-Liang</creatorcontrib><creatorcontrib>Liu, Weijian</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Hang</au><au>Wang, Yong-Liang</au><au>Liu, Weijian</au><au>Liu, Jun</au><au>Chen, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Detection in Partially Homogeneous Environment with Limited Samples Based on Geometric Barycenters</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2022</date><risdate>2022</risdate><volume>29</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>To solve the problem of adaptive detection in partially homogeneous environment with outliers and limited samples, a class of two-step detectors are designed based on geometric barycenters. The first step is to construct a data selector based on generalized inner product and eliminate sample data containing outliers. The second step is to construct detection statistics of the adaptive coherence estimator using covariance matrix estimators, which are based on geometric barycenters. The detectors utilize geometric barycenters of the positive definite matrix space without any knowledge of prior probability distribution of sample data. The performance of the proposed two-step detectors is evaluated in terms of the probabilities of correct outliers excision, false alarm, and detection. Experiment results, based on simulated and real data, show that the proposed approach has better detection performance than the existing ones based on traditional covariance estimator.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2022.3207617</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3887-9500</orcidid><orcidid>https://orcid.org/0000-0002-7193-0622</orcidid><orcidid>https://orcid.org/0000-0002-0201-0726</orcidid><orcidid>https://orcid.org/0000-0002-0330-8073</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2022, Vol.29, p.1-5 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_proquest_journals_2727047643 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive detection Clutter Conditional probability Covariance matrix covariance matrix estimate Data analysis Detectors False alarms geometric barycenter limited samples Mathematical analysis Maximum likelihood estimation Outliers (statistics) partially homogeneous environment Radar Statistical distributions Training Training data |
title | Adaptive Detection in Partially Homogeneous Environment with Limited Samples Based on Geometric Barycenters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A28%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Detection%20in%20Partially%20Homogeneous%20Environment%20with%20Limited%20Samples%20Based%20on%20Geometric%20Barycenters&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Ye,%20Hang&rft.date=2022&rft.volume=29&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2022.3207617&rft_dat=%3Cproquest_RIE%3E2727047643%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727047643&rft_id=info:pmid/&rft_ieee_id=9894693&rfr_iscdi=true |