Duality Between Source Coding With Quantum Side Information and Classical-Quantum Channel Coding

In this paper, we establish an interesting duality between two different quantum information-processing tasks, namely, classical source coding with quantum side information, and channel coding over classical-quantum channels. The duality relates the optimal error exponents of these two tasks, genera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2022-11, Vol.68 (11), p.7315-7345
Hauptverfasser: Cheng, Hao-Chung, Hanson, Eric P., Datta, Nilanjana, Hsieh, Min-Hsiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7345
container_issue 11
container_start_page 7315
container_title IEEE transactions on information theory
container_volume 68
creator Cheng, Hao-Chung
Hanson, Eric P.
Datta, Nilanjana
Hsieh, Min-Hsiu
description In this paper, we establish an interesting duality between two different quantum information-processing tasks, namely, classical source coding with quantum side information, and channel coding over classical-quantum channels. The duality relates the optimal error exponents of these two tasks, generalizing the classical results of Ahlswede and Dueck [ IEEE Trans. Inf. Theory , 28(3):430-443, 1982]. We establish duality both at the operational level and at the level of the entropic quantities characterizing these exponents. For the latter, the duality is given by an exact relation, whereas for the former, duality manifests itself in the following sense: an optimal coding strategy for one task can be used to construct an optimal coding strategy for the other task. Along the way, we derive a bound on the error exponent for classical-quantum channel coding with constant composition codes which might be of independent interest. Finally, we consider the task of variable-length classical compression with quantum side information, and a duality relation between this task and classical-quantum channel coding can also be established correspondingly. Furthermore, we study the strong converse of this task, and show that the strong converse property does not hold even in the i.i.d. scenario.
doi_str_mv 10.1109/TIT.2022.3182748
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2727046595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9795101</ieee_id><sourcerecordid>2727046595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-ccf54eac16e6090bb0f68009e65b74250efb49953e97aacb927835bfa069d6003</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6mzm_3IHjV-FQoirXhcN9uJTUk3mk2Q_ntTWj0NA-_zDvMQcslgwhiYm8V0MeHA-SRlGdciOyIjJqVOjJLimIwAWJYYIbJTchbjeliFZHxEPu57V1fdlt5h94MY6LzpW480b5ZV-KTvVbeir70LXb-h82qJdBrKpt24rmoCdWFJ89rFWHlXJ3-xfOVCwPpQcU5OSldHvDjMMXl7fFjkz8ns5Wma384SzznrEu9LKdB5plCBgaKAUmUABpUstOASsCyEMTJFo53zheE6S2VROlBmqQDSMbne9361zXePsbPr4ZMwnLRccw1CyYEeE9infNvE2GJpv9pq49qtZWB3Hu3g0e482oPHAbnaIxUi_seNNpIBS38B7-Juaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727046595</pqid></control><display><type>article</type><title>Duality Between Source Coding With Quantum Side Information and Classical-Quantum Channel Coding</title><source>IEEE Xplore</source><creator>Cheng, Hao-Chung ; Hanson, Eric P. ; Datta, Nilanjana ; Hsieh, Min-Hsiu</creator><creatorcontrib>Cheng, Hao-Chung ; Hanson, Eric P. ; Datta, Nilanjana ; Hsieh, Min-Hsiu</creatorcontrib><description>In this paper, we establish an interesting duality between two different quantum information-processing tasks, namely, classical source coding with quantum side information, and channel coding over classical-quantum channels. The duality relates the optimal error exponents of these two tasks, generalizing the classical results of Ahlswede and Dueck [ IEEE Trans. Inf. Theory , 28(3):430-443, 1982]. We establish duality both at the operational level and at the level of the entropic quantities characterizing these exponents. For the latter, the duality is given by an exact relation, whereas for the former, duality manifests itself in the following sense: an optimal coding strategy for one task can be used to construct an optimal coding strategy for the other task. Along the way, we derive a bound on the error exponent for classical-quantum channel coding with constant composition codes which might be of independent interest. Finally, we consider the task of variable-length classical compression with quantum side information, and a duality relation between this task and classical-quantum channel coding can also be established correspondingly. Furthermore, we study the strong converse of this task, and show that the strong converse property does not hold even in the i.i.d. scenario.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2022.3182748</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Channel coding ; classical-quantum channel coding ; Codes ; Coding ; Decoding ; Duality ; Entropy ; error exponent ; Exponents ; Protocols ; Quantum phenomena ; quantum side information ; Quantum state ; Slepian-Wolf coding ; Source coding ; strong converse ; Task analysis</subject><ispartof>IEEE transactions on information theory, 2022-11, Vol.68 (11), p.7315-7345</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-ccf54eac16e6090bb0f68009e65b74250efb49953e97aacb927835bfa069d6003</citedby><cites>FETCH-LOGICAL-c221t-ccf54eac16e6090bb0f68009e65b74250efb49953e97aacb927835bfa069d6003</cites><orcidid>0000-0003-4499-4679 ; 0000-0002-3396-8427 ; 0000-0002-4675-4348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9795101$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9795101$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheng, Hao-Chung</creatorcontrib><creatorcontrib>Hanson, Eric P.</creatorcontrib><creatorcontrib>Datta, Nilanjana</creatorcontrib><creatorcontrib>Hsieh, Min-Hsiu</creatorcontrib><title>Duality Between Source Coding With Quantum Side Information and Classical-Quantum Channel Coding</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In this paper, we establish an interesting duality between two different quantum information-processing tasks, namely, classical source coding with quantum side information, and channel coding over classical-quantum channels. The duality relates the optimal error exponents of these two tasks, generalizing the classical results of Ahlswede and Dueck [ IEEE Trans. Inf. Theory , 28(3):430-443, 1982]. We establish duality both at the operational level and at the level of the entropic quantities characterizing these exponents. For the latter, the duality is given by an exact relation, whereas for the former, duality manifests itself in the following sense: an optimal coding strategy for one task can be used to construct an optimal coding strategy for the other task. Along the way, we derive a bound on the error exponent for classical-quantum channel coding with constant composition codes which might be of independent interest. Finally, we consider the task of variable-length classical compression with quantum side information, and a duality relation between this task and classical-quantum channel coding can also be established correspondingly. Furthermore, we study the strong converse of this task, and show that the strong converse property does not hold even in the i.i.d. scenario.</description><subject>Channel coding</subject><subject>classical-quantum channel coding</subject><subject>Codes</subject><subject>Coding</subject><subject>Decoding</subject><subject>Duality</subject><subject>Entropy</subject><subject>error exponent</subject><subject>Exponents</subject><subject>Protocols</subject><subject>Quantum phenomena</subject><subject>quantum side information</subject><subject>Quantum state</subject><subject>Slepian-Wolf coding</subject><subject>Source coding</subject><subject>strong converse</subject><subject>Task analysis</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6mzm_3IHjV-FQoirXhcN9uJTUk3mk2Q_ntTWj0NA-_zDvMQcslgwhiYm8V0MeHA-SRlGdciOyIjJqVOjJLimIwAWJYYIbJTchbjeliFZHxEPu57V1fdlt5h94MY6LzpW480b5ZV-KTvVbeir70LXb-h82qJdBrKpt24rmoCdWFJ89rFWHlXJ3-xfOVCwPpQcU5OSldHvDjMMXl7fFjkz8ns5Wma384SzznrEu9LKdB5plCBgaKAUmUABpUstOASsCyEMTJFo53zheE6S2VROlBmqQDSMbne9361zXePsbPr4ZMwnLRccw1CyYEeE9infNvE2GJpv9pq49qtZWB3Hu3g0e482oPHAbnaIxUi_seNNpIBS38B7-Juaw</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Cheng, Hao-Chung</creator><creator>Hanson, Eric P.</creator><creator>Datta, Nilanjana</creator><creator>Hsieh, Min-Hsiu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4499-4679</orcidid><orcidid>https://orcid.org/0000-0002-3396-8427</orcidid><orcidid>https://orcid.org/0000-0002-4675-4348</orcidid></search><sort><creationdate>20221101</creationdate><title>Duality Between Source Coding With Quantum Side Information and Classical-Quantum Channel Coding</title><author>Cheng, Hao-Chung ; Hanson, Eric P. ; Datta, Nilanjana ; Hsieh, Min-Hsiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-ccf54eac16e6090bb0f68009e65b74250efb49953e97aacb927835bfa069d6003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Channel coding</topic><topic>classical-quantum channel coding</topic><topic>Codes</topic><topic>Coding</topic><topic>Decoding</topic><topic>Duality</topic><topic>Entropy</topic><topic>error exponent</topic><topic>Exponents</topic><topic>Protocols</topic><topic>Quantum phenomena</topic><topic>quantum side information</topic><topic>Quantum state</topic><topic>Slepian-Wolf coding</topic><topic>Source coding</topic><topic>strong converse</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Hao-Chung</creatorcontrib><creatorcontrib>Hanson, Eric P.</creatorcontrib><creatorcontrib>Datta, Nilanjana</creatorcontrib><creatorcontrib>Hsieh, Min-Hsiu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, Hao-Chung</au><au>Hanson, Eric P.</au><au>Datta, Nilanjana</au><au>Hsieh, Min-Hsiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duality Between Source Coding With Quantum Side Information and Classical-Quantum Channel Coding</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>68</volume><issue>11</issue><spage>7315</spage><epage>7345</epage><pages>7315-7345</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In this paper, we establish an interesting duality between two different quantum information-processing tasks, namely, classical source coding with quantum side information, and channel coding over classical-quantum channels. The duality relates the optimal error exponents of these two tasks, generalizing the classical results of Ahlswede and Dueck [ IEEE Trans. Inf. Theory , 28(3):430-443, 1982]. We establish duality both at the operational level and at the level of the entropic quantities characterizing these exponents. For the latter, the duality is given by an exact relation, whereas for the former, duality manifests itself in the following sense: an optimal coding strategy for one task can be used to construct an optimal coding strategy for the other task. Along the way, we derive a bound on the error exponent for classical-quantum channel coding with constant composition codes which might be of independent interest. Finally, we consider the task of variable-length classical compression with quantum side information, and a duality relation between this task and classical-quantum channel coding can also be established correspondingly. Furthermore, we study the strong converse of this task, and show that the strong converse property does not hold even in the i.i.d. scenario.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2022.3182748</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0003-4499-4679</orcidid><orcidid>https://orcid.org/0000-0002-3396-8427</orcidid><orcidid>https://orcid.org/0000-0002-4675-4348</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2022-11, Vol.68 (11), p.7315-7345
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_2727046595
source IEEE Xplore
subjects Channel coding
classical-quantum channel coding
Codes
Coding
Decoding
Duality
Entropy
error exponent
Exponents
Protocols
Quantum phenomena
quantum side information
Quantum state
Slepian-Wolf coding
Source coding
strong converse
Task analysis
title Duality Between Source Coding With Quantum Side Information and Classical-Quantum Channel Coding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duality%20Between%20Source%20Coding%20With%20Quantum%20Side%20Information%20and%20Classical-Quantum%20Channel%20Coding&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Cheng,%20Hao-Chung&rft.date=2022-11-01&rft.volume=68&rft.issue=11&rft.spage=7315&rft.epage=7345&rft.pages=7315-7345&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2022.3182748&rft_dat=%3Cproquest_RIE%3E2727046595%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727046595&rft_id=info:pmid/&rft_ieee_id=9795101&rfr_iscdi=true