Electrical Characterization and Modeling of GaN HEMTs at Cryogenic Temperatures

In this work, we present a phenomenological cryogenic model for gallium nitride (GaN) high electron mobility transistors (HEMTs) with validity all the way down to a temperature of 10 K, benchmarked with experimental characterization results. The device under test (DUT) for cryogenic characterization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2022-11, Vol.69 (11), p.6016-6022
Hauptverfasser: Nazir, Mohammad Sajid, Kushwaha, Pragya, Pampori, Ahtisham, Ahsan, Sheikh Aamir, Chauhan, Yogesh Singh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6022
container_issue 11
container_start_page 6016
container_title IEEE transactions on electron devices
container_volume 69
creator Nazir, Mohammad Sajid
Kushwaha, Pragya
Pampori, Ahtisham
Ahsan, Sheikh Aamir
Chauhan, Yogesh Singh
description In this work, we present a phenomenological cryogenic model for gallium nitride (GaN) high electron mobility transistors (HEMTs) with validity all the way down to a temperature of 10 K, benchmarked with experimental characterization results. The device under test (DUT) for cryogenic characterization is a GaN HEMT with a channel length of 250 nm and a gate width of 40~\mu \text{m} . The characterization results exhibit the negative threshold voltage shifts of −3.437, −3.087, and −2.998 V at the temperatures of 300, 60, and 10 K, respectively. Additionally, kink effects at cryogenic temperatures in output characteristics are observed that behave non-monotonically with gate-to-source bias. The impact of detrapping is modeled to investigate the negative shift in {V}_{\text {TH}} with increasing temperature. To model the kink, the effects of temperature, impact ionization, and field-dependent trapping/detrapping on {V}_{\text {TH}} have been explored and implemented as a submodel in the industry standard Advanced SPICE Model (ASM)-HEMT framework. Here, we aim to overcome the limitations of the prior GaN device models in the quest for enabling GaN-based circuits for cryogenic applications, such as deep space reception, radio astronomy, and quantum computing.
doi_str_mv 10.1109/TED.2022.3204523
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2727045462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9896842</ieee_id><sourcerecordid>2727045462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-3c3b5f86ddb0a71302040cf63c5f007bf4a255a1369acf9f4f7bbf322d3681263</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvAc2fykqbNUWrdhM1d6jmkaTI7unYm2WH-9XZseHo8-H6_9_gQeqRkRimRL1X5NgMCMGNAeArsCk1ommaJFFxcowkhNE8ky9ktugthO66Cc5igddlZE31rdIeLb-21ida3vzq2Q4913-DV0Niu7Td4cHiuP_GiXFUB64gLfxw2tm8Nruxub72OB2_DPbpxugv24TKn6Ou9rIpFslzPP4rXZWJA0pgww-rU5aJpaqIzysj4NDFOMJM6QrLacQ1pqikTUhsnHXdZXTsG0DCRUxBsip7PvXs__BxsiGo7HHw_nlSQQTYq4AJGipwp44cQvHVq79ud9kdFiTppU6M2ddKmLtrGyNM50lpr_3GZS5FzYH8ZT2ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727045462</pqid></control><display><type>article</type><title>Electrical Characterization and Modeling of GaN HEMTs at Cryogenic Temperatures</title><source>IEEE Electronic Library (IEL)</source><creator>Nazir, Mohammad Sajid ; Kushwaha, Pragya ; Pampori, Ahtisham ; Ahsan, Sheikh Aamir ; Chauhan, Yogesh Singh</creator><creatorcontrib>Nazir, Mohammad Sajid ; Kushwaha, Pragya ; Pampori, Ahtisham ; Ahsan, Sheikh Aamir ; Chauhan, Yogesh Singh</creatorcontrib><description><![CDATA[In this work, we present a phenomenological cryogenic model for gallium nitride (GaN) high electron mobility transistors (HEMTs) with validity all the way down to a temperature of 10 K, benchmarked with experimental characterization results. The device under test (DUT) for cryogenic characterization is a GaN HEMT with a channel length of 250 nm and a gate width of <inline-formula> <tex-math notation="LaTeX">40~\mu \text{m} </tex-math></inline-formula>. The characterization results exhibit the negative threshold voltage shifts of −3.437, −3.087, and −2.998 V at the temperatures of 300, 60, and 10 K, respectively. Additionally, kink effects at cryogenic temperatures in output characteristics are observed that behave non-monotonically with gate-to-source bias. The impact of detrapping is modeled to investigate the negative shift in <inline-formula> <tex-math notation="LaTeX">{V}_{\text {TH}} </tex-math></inline-formula> with increasing temperature. To model the kink, the effects of temperature, impact ionization, and field-dependent trapping/detrapping on <inline-formula> <tex-math notation="LaTeX">{V}_{\text {TH}} </tex-math></inline-formula> have been explored and implemented as a submodel in the industry standard Advanced SPICE Model (ASM)-HEMT framework. Here, we aim to overcome the limitations of the prior GaN device models in the quest for enabling GaN-based circuits for cryogenic applications, such as deep space reception, radio astronomy, and quantum computing.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3204523</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Advanced SPICE Model (ASM)-HEMT ; aluminium gallium nitride (AlGaN)/gallium nitride (GaN) high electron mobility transistor (HEMT) ; Aluminum gallium nitride ; cryogenic ; Cryogenic engineering ; Cryogenic temperature ; Cryogenics ; Deep space ; Electrical properties ; Gallium nitride ; Gallium nitrides ; HEMTs ; High electron mobility transistors ; Industry standards ; kink ; MODFETs ; Quantum computing ; Radio astronomy ; Semiconductor devices ; Temperature ; Temperature dependence ; Temperature effects ; Threshold voltage ; threshold voltage (TH) ; trapping ; Wide band gap semiconductors</subject><ispartof>IEEE transactions on electron devices, 2022-11, Vol.69 (11), p.6016-6022</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-3c3b5f86ddb0a71302040cf63c5f007bf4a255a1369acf9f4f7bbf322d3681263</citedby><cites>FETCH-LOGICAL-c291t-3c3b5f86ddb0a71302040cf63c5f007bf4a255a1369acf9f4f7bbf322d3681263</cites><orcidid>0000-0002-0303-4914 ; 0000-0001-7758-6239 ; 0000-0002-6575-2241 ; 0000-0002-3356-8917 ; 0000-0003-3759-6066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9896842$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9896842$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nazir, Mohammad Sajid</creatorcontrib><creatorcontrib>Kushwaha, Pragya</creatorcontrib><creatorcontrib>Pampori, Ahtisham</creatorcontrib><creatorcontrib>Ahsan, Sheikh Aamir</creatorcontrib><creatorcontrib>Chauhan, Yogesh Singh</creatorcontrib><title>Electrical Characterization and Modeling of GaN HEMTs at Cryogenic Temperatures</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[In this work, we present a phenomenological cryogenic model for gallium nitride (GaN) high electron mobility transistors (HEMTs) with validity all the way down to a temperature of 10 K, benchmarked with experimental characterization results. The device under test (DUT) for cryogenic characterization is a GaN HEMT with a channel length of 250 nm and a gate width of <inline-formula> <tex-math notation="LaTeX">40~\mu \text{m} </tex-math></inline-formula>. The characterization results exhibit the negative threshold voltage shifts of −3.437, −3.087, and −2.998 V at the temperatures of 300, 60, and 10 K, respectively. Additionally, kink effects at cryogenic temperatures in output characteristics are observed that behave non-monotonically with gate-to-source bias. The impact of detrapping is modeled to investigate the negative shift in <inline-formula> <tex-math notation="LaTeX">{V}_{\text {TH}} </tex-math></inline-formula> with increasing temperature. To model the kink, the effects of temperature, impact ionization, and field-dependent trapping/detrapping on <inline-formula> <tex-math notation="LaTeX">{V}_{\text {TH}} </tex-math></inline-formula> have been explored and implemented as a submodel in the industry standard Advanced SPICE Model (ASM)-HEMT framework. Here, we aim to overcome the limitations of the prior GaN device models in the quest for enabling GaN-based circuits for cryogenic applications, such as deep space reception, radio astronomy, and quantum computing.]]></description><subject>Advanced SPICE Model (ASM)-HEMT</subject><subject>aluminium gallium nitride (AlGaN)/gallium nitride (GaN) high electron mobility transistor (HEMT)</subject><subject>Aluminum gallium nitride</subject><subject>cryogenic</subject><subject>Cryogenic engineering</subject><subject>Cryogenic temperature</subject><subject>Cryogenics</subject><subject>Deep space</subject><subject>Electrical properties</subject><subject>Gallium nitride</subject><subject>Gallium nitrides</subject><subject>HEMTs</subject><subject>High electron mobility transistors</subject><subject>Industry standards</subject><subject>kink</subject><subject>MODFETs</subject><subject>Quantum computing</subject><subject>Radio astronomy</subject><subject>Semiconductor devices</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><subject>Threshold voltage</subject><subject>threshold voltage (TH)</subject><subject>trapping</subject><subject>Wide band gap semiconductors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOKd3wUvAc2fykqbNUWrdhM1d6jmkaTI7unYm2WH-9XZseHo8-H6_9_gQeqRkRimRL1X5NgMCMGNAeArsCk1ommaJFFxcowkhNE8ky9ktugthO66Cc5igddlZE31rdIeLb-21ida3vzq2Q4913-DV0Niu7Td4cHiuP_GiXFUB64gLfxw2tm8Nruxub72OB2_DPbpxugv24TKn6Ou9rIpFslzPP4rXZWJA0pgww-rU5aJpaqIzysj4NDFOMJM6QrLacQ1pqikTUhsnHXdZXTsG0DCRUxBsip7PvXs__BxsiGo7HHw_nlSQQTYq4AJGipwp44cQvHVq79ud9kdFiTppU6M2ddKmLtrGyNM50lpr_3GZS5FzYH8ZT2ew</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Nazir, Mohammad Sajid</creator><creator>Kushwaha, Pragya</creator><creator>Pampori, Ahtisham</creator><creator>Ahsan, Sheikh Aamir</creator><creator>Chauhan, Yogesh Singh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0303-4914</orcidid><orcidid>https://orcid.org/0000-0001-7758-6239</orcidid><orcidid>https://orcid.org/0000-0002-6575-2241</orcidid><orcidid>https://orcid.org/0000-0002-3356-8917</orcidid><orcidid>https://orcid.org/0000-0003-3759-6066</orcidid></search><sort><creationdate>20221101</creationdate><title>Electrical Characterization and Modeling of GaN HEMTs at Cryogenic Temperatures</title><author>Nazir, Mohammad Sajid ; Kushwaha, Pragya ; Pampori, Ahtisham ; Ahsan, Sheikh Aamir ; Chauhan, Yogesh Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-3c3b5f86ddb0a71302040cf63c5f007bf4a255a1369acf9f4f7bbf322d3681263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Advanced SPICE Model (ASM)-HEMT</topic><topic>aluminium gallium nitride (AlGaN)/gallium nitride (GaN) high electron mobility transistor (HEMT)</topic><topic>Aluminum gallium nitride</topic><topic>cryogenic</topic><topic>Cryogenic engineering</topic><topic>Cryogenic temperature</topic><topic>Cryogenics</topic><topic>Deep space</topic><topic>Electrical properties</topic><topic>Gallium nitride</topic><topic>Gallium nitrides</topic><topic>HEMTs</topic><topic>High electron mobility transistors</topic><topic>Industry standards</topic><topic>kink</topic><topic>MODFETs</topic><topic>Quantum computing</topic><topic>Radio astronomy</topic><topic>Semiconductor devices</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><topic>Threshold voltage</topic><topic>threshold voltage (TH)</topic><topic>trapping</topic><topic>Wide band gap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazir, Mohammad Sajid</creatorcontrib><creatorcontrib>Kushwaha, Pragya</creatorcontrib><creatorcontrib>Pampori, Ahtisham</creatorcontrib><creatorcontrib>Ahsan, Sheikh Aamir</creatorcontrib><creatorcontrib>Chauhan, Yogesh Singh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nazir, Mohammad Sajid</au><au>Kushwaha, Pragya</au><au>Pampori, Ahtisham</au><au>Ahsan, Sheikh Aamir</au><au>Chauhan, Yogesh Singh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical Characterization and Modeling of GaN HEMTs at Cryogenic Temperatures</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>69</volume><issue>11</issue><spage>6016</spage><epage>6022</epage><pages>6016-6022</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[In this work, we present a phenomenological cryogenic model for gallium nitride (GaN) high electron mobility transistors (HEMTs) with validity all the way down to a temperature of 10 K, benchmarked with experimental characterization results. The device under test (DUT) for cryogenic characterization is a GaN HEMT with a channel length of 250 nm and a gate width of <inline-formula> <tex-math notation="LaTeX">40~\mu \text{m} </tex-math></inline-formula>. The characterization results exhibit the negative threshold voltage shifts of −3.437, −3.087, and −2.998 V at the temperatures of 300, 60, and 10 K, respectively. Additionally, kink effects at cryogenic temperatures in output characteristics are observed that behave non-monotonically with gate-to-source bias. The impact of detrapping is modeled to investigate the negative shift in <inline-formula> <tex-math notation="LaTeX">{V}_{\text {TH}} </tex-math></inline-formula> with increasing temperature. To model the kink, the effects of temperature, impact ionization, and field-dependent trapping/detrapping on <inline-formula> <tex-math notation="LaTeX">{V}_{\text {TH}} </tex-math></inline-formula> have been explored and implemented as a submodel in the industry standard Advanced SPICE Model (ASM)-HEMT framework. Here, we aim to overcome the limitations of the prior GaN device models in the quest for enabling GaN-based circuits for cryogenic applications, such as deep space reception, radio astronomy, and quantum computing.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3204523</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0303-4914</orcidid><orcidid>https://orcid.org/0000-0001-7758-6239</orcidid><orcidid>https://orcid.org/0000-0002-6575-2241</orcidid><orcidid>https://orcid.org/0000-0002-3356-8917</orcidid><orcidid>https://orcid.org/0000-0003-3759-6066</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2022-11, Vol.69 (11), p.6016-6022
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2727045462
source IEEE Electronic Library (IEL)
subjects Advanced SPICE Model (ASM)-HEMT
aluminium gallium nitride (AlGaN)/gallium nitride (GaN) high electron mobility transistor (HEMT)
Aluminum gallium nitride
cryogenic
Cryogenic engineering
Cryogenic temperature
Cryogenics
Deep space
Electrical properties
Gallium nitride
Gallium nitrides
HEMTs
High electron mobility transistors
Industry standards
kink
MODFETs
Quantum computing
Radio astronomy
Semiconductor devices
Temperature
Temperature dependence
Temperature effects
Threshold voltage
threshold voltage (TH)
trapping
Wide band gap semiconductors
title Electrical Characterization and Modeling of GaN HEMTs at Cryogenic Temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T16%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20Characterization%20and%20Modeling%20of%20GaN%20HEMTs%20at%20Cryogenic%20Temperatures&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Nazir,%20Mohammad%20Sajid&rft.date=2022-11-01&rft.volume=69&rft.issue=11&rft.spage=6016&rft.epage=6022&rft.pages=6016-6022&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3204523&rft_dat=%3Cproquest_RIE%3E2727045462%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727045462&rft_id=info:pmid/&rft_ieee_id=9896842&rfr_iscdi=true