Electrical Characterization and Modeling of GaN HEMTs at Cryogenic Temperatures
In this work, we present a phenomenological cryogenic model for gallium nitride (GaN) high electron mobility transistors (HEMTs) with validity all the way down to a temperature of 10 K, benchmarked with experimental characterization results. The device under test (DUT) for cryogenic characterization...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2022-11, Vol.69 (11), p.6016-6022 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6022 |
---|---|
container_issue | 11 |
container_start_page | 6016 |
container_title | IEEE transactions on electron devices |
container_volume | 69 |
creator | Nazir, Mohammad Sajid Kushwaha, Pragya Pampori, Ahtisham Ahsan, Sheikh Aamir Chauhan, Yogesh Singh |
description | In this work, we present a phenomenological cryogenic model for gallium nitride (GaN) high electron mobility transistors (HEMTs) with validity all the way down to a temperature of 10 K, benchmarked with experimental characterization results. The device under test (DUT) for cryogenic characterization is a GaN HEMT with a channel length of 250 nm and a gate width of 40~\mu \text{m} . The characterization results exhibit the negative threshold voltage shifts of −3.437, −3.087, and −2.998 V at the temperatures of 300, 60, and 10 K, respectively. Additionally, kink effects at cryogenic temperatures in output characteristics are observed that behave non-monotonically with gate-to-source bias. The impact of detrapping is modeled to investigate the negative shift in {V}_{\text {TH}} with increasing temperature. To model the kink, the effects of temperature, impact ionization, and field-dependent trapping/detrapping on {V}_{\text {TH}} have been explored and implemented as a submodel in the industry standard Advanced SPICE Model (ASM)-HEMT framework. Here, we aim to overcome the limitations of the prior GaN device models in the quest for enabling GaN-based circuits for cryogenic applications, such as deep space reception, radio astronomy, and quantum computing. |
doi_str_mv | 10.1109/TED.2022.3204523 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2727045462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9896842</ieee_id><sourcerecordid>2727045462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-3c3b5f86ddb0a71302040cf63c5f007bf4a255a1369acf9f4f7bbf322d3681263</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvAc2fykqbNUWrdhM1d6jmkaTI7unYm2WH-9XZseHo8-H6_9_gQeqRkRimRL1X5NgMCMGNAeArsCk1ommaJFFxcowkhNE8ky9ktugthO66Cc5igddlZE31rdIeLb-21ida3vzq2Q4913-DV0Niu7Td4cHiuP_GiXFUB64gLfxw2tm8Nruxub72OB2_DPbpxugv24TKn6Ou9rIpFslzPP4rXZWJA0pgww-rU5aJpaqIzysj4NDFOMJM6QrLacQ1pqikTUhsnHXdZXTsG0DCRUxBsip7PvXs__BxsiGo7HHw_nlSQQTYq4AJGipwp44cQvHVq79ud9kdFiTppU6M2ddKmLtrGyNM50lpr_3GZS5FzYH8ZT2ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727045462</pqid></control><display><type>article</type><title>Electrical Characterization and Modeling of GaN HEMTs at Cryogenic Temperatures</title><source>IEEE Electronic Library (IEL)</source><creator>Nazir, Mohammad Sajid ; Kushwaha, Pragya ; Pampori, Ahtisham ; Ahsan, Sheikh Aamir ; Chauhan, Yogesh Singh</creator><creatorcontrib>Nazir, Mohammad Sajid ; Kushwaha, Pragya ; Pampori, Ahtisham ; Ahsan, Sheikh Aamir ; Chauhan, Yogesh Singh</creatorcontrib><description><![CDATA[In this work, we present a phenomenological cryogenic model for gallium nitride (GaN) high electron mobility transistors (HEMTs) with validity all the way down to a temperature of 10 K, benchmarked with experimental characterization results. The device under test (DUT) for cryogenic characterization is a GaN HEMT with a channel length of 250 nm and a gate width of <inline-formula> <tex-math notation="LaTeX">40~\mu \text{m} </tex-math></inline-formula>. The characterization results exhibit the negative threshold voltage shifts of −3.437, −3.087, and −2.998 V at the temperatures of 300, 60, and 10 K, respectively. Additionally, kink effects at cryogenic temperatures in output characteristics are observed that behave non-monotonically with gate-to-source bias. The impact of detrapping is modeled to investigate the negative shift in <inline-formula> <tex-math notation="LaTeX">{V}_{\text {TH}} </tex-math></inline-formula> with increasing temperature. To model the kink, the effects of temperature, impact ionization, and field-dependent trapping/detrapping on <inline-formula> <tex-math notation="LaTeX">{V}_{\text {TH}} </tex-math></inline-formula> have been explored and implemented as a submodel in the industry standard Advanced SPICE Model (ASM)-HEMT framework. Here, we aim to overcome the limitations of the prior GaN device models in the quest for enabling GaN-based circuits for cryogenic applications, such as deep space reception, radio astronomy, and quantum computing.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3204523</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Advanced SPICE Model (ASM)-HEMT ; aluminium gallium nitride (AlGaN)/gallium nitride (GaN) high electron mobility transistor (HEMT) ; Aluminum gallium nitride ; cryogenic ; Cryogenic engineering ; Cryogenic temperature ; Cryogenics ; Deep space ; Electrical properties ; Gallium nitride ; Gallium nitrides ; HEMTs ; High electron mobility transistors ; Industry standards ; kink ; MODFETs ; Quantum computing ; Radio astronomy ; Semiconductor devices ; Temperature ; Temperature dependence ; Temperature effects ; Threshold voltage ; threshold voltage (TH) ; trapping ; Wide band gap semiconductors</subject><ispartof>IEEE transactions on electron devices, 2022-11, Vol.69 (11), p.6016-6022</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-3c3b5f86ddb0a71302040cf63c5f007bf4a255a1369acf9f4f7bbf322d3681263</citedby><cites>FETCH-LOGICAL-c291t-3c3b5f86ddb0a71302040cf63c5f007bf4a255a1369acf9f4f7bbf322d3681263</cites><orcidid>0000-0002-0303-4914 ; 0000-0001-7758-6239 ; 0000-0002-6575-2241 ; 0000-0002-3356-8917 ; 0000-0003-3759-6066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9896842$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9896842$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nazir, Mohammad Sajid</creatorcontrib><creatorcontrib>Kushwaha, Pragya</creatorcontrib><creatorcontrib>Pampori, Ahtisham</creatorcontrib><creatorcontrib>Ahsan, Sheikh Aamir</creatorcontrib><creatorcontrib>Chauhan, Yogesh Singh</creatorcontrib><title>Electrical Characterization and Modeling of GaN HEMTs at Cryogenic Temperatures</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[In this work, we present a phenomenological cryogenic model for gallium nitride (GaN) high electron mobility transistors (HEMTs) with validity all the way down to a temperature of 10 K, benchmarked with experimental characterization results. The device under test (DUT) for cryogenic characterization is a GaN HEMT with a channel length of 250 nm and a gate width of <inline-formula> <tex-math notation="LaTeX">40~\mu \text{m} </tex-math></inline-formula>. The characterization results exhibit the negative threshold voltage shifts of −3.437, −3.087, and −2.998 V at the temperatures of 300, 60, and 10 K, respectively. Additionally, kink effects at cryogenic temperatures in output characteristics are observed that behave non-monotonically with gate-to-source bias. The impact of detrapping is modeled to investigate the negative shift in <inline-formula> <tex-math notation="LaTeX">{V}_{\text {TH}} </tex-math></inline-formula> with increasing temperature. To model the kink, the effects of temperature, impact ionization, and field-dependent trapping/detrapping on <inline-formula> <tex-math notation="LaTeX">{V}_{\text {TH}} </tex-math></inline-formula> have been explored and implemented as a submodel in the industry standard Advanced SPICE Model (ASM)-HEMT framework. Here, we aim to overcome the limitations of the prior GaN device models in the quest for enabling GaN-based circuits for cryogenic applications, such as deep space reception, radio astronomy, and quantum computing.]]></description><subject>Advanced SPICE Model (ASM)-HEMT</subject><subject>aluminium gallium nitride (AlGaN)/gallium nitride (GaN) high electron mobility transistor (HEMT)</subject><subject>Aluminum gallium nitride</subject><subject>cryogenic</subject><subject>Cryogenic engineering</subject><subject>Cryogenic temperature</subject><subject>Cryogenics</subject><subject>Deep space</subject><subject>Electrical properties</subject><subject>Gallium nitride</subject><subject>Gallium nitrides</subject><subject>HEMTs</subject><subject>High electron mobility transistors</subject><subject>Industry standards</subject><subject>kink</subject><subject>MODFETs</subject><subject>Quantum computing</subject><subject>Radio astronomy</subject><subject>Semiconductor devices</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><subject>Threshold voltage</subject><subject>threshold voltage (TH)</subject><subject>trapping</subject><subject>Wide band gap semiconductors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOKd3wUvAc2fykqbNUWrdhM1d6jmkaTI7unYm2WH-9XZseHo8-H6_9_gQeqRkRimRL1X5NgMCMGNAeArsCk1ommaJFFxcowkhNE8ky9ktugthO66Cc5igddlZE31rdIeLb-21ida3vzq2Q4913-DV0Niu7Td4cHiuP_GiXFUB64gLfxw2tm8Nruxub72OB2_DPbpxugv24TKn6Ou9rIpFslzPP4rXZWJA0pgww-rU5aJpaqIzysj4NDFOMJM6QrLacQ1pqikTUhsnHXdZXTsG0DCRUxBsip7PvXs__BxsiGo7HHw_nlSQQTYq4AJGipwp44cQvHVq79ud9kdFiTppU6M2ddKmLtrGyNM50lpr_3GZS5FzYH8ZT2ew</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Nazir, Mohammad Sajid</creator><creator>Kushwaha, Pragya</creator><creator>Pampori, Ahtisham</creator><creator>Ahsan, Sheikh Aamir</creator><creator>Chauhan, Yogesh Singh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0303-4914</orcidid><orcidid>https://orcid.org/0000-0001-7758-6239</orcidid><orcidid>https://orcid.org/0000-0002-6575-2241</orcidid><orcidid>https://orcid.org/0000-0002-3356-8917</orcidid><orcidid>https://orcid.org/0000-0003-3759-6066</orcidid></search><sort><creationdate>20221101</creationdate><title>Electrical Characterization and Modeling of GaN HEMTs at Cryogenic Temperatures</title><author>Nazir, Mohammad Sajid ; Kushwaha, Pragya ; Pampori, Ahtisham ; Ahsan, Sheikh Aamir ; Chauhan, Yogesh Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-3c3b5f86ddb0a71302040cf63c5f007bf4a255a1369acf9f4f7bbf322d3681263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Advanced SPICE Model (ASM)-HEMT</topic><topic>aluminium gallium nitride (AlGaN)/gallium nitride (GaN) high electron mobility transistor (HEMT)</topic><topic>Aluminum gallium nitride</topic><topic>cryogenic</topic><topic>Cryogenic engineering</topic><topic>Cryogenic temperature</topic><topic>Cryogenics</topic><topic>Deep space</topic><topic>Electrical properties</topic><topic>Gallium nitride</topic><topic>Gallium nitrides</topic><topic>HEMTs</topic><topic>High electron mobility transistors</topic><topic>Industry standards</topic><topic>kink</topic><topic>MODFETs</topic><topic>Quantum computing</topic><topic>Radio astronomy</topic><topic>Semiconductor devices</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><topic>Threshold voltage</topic><topic>threshold voltage (TH)</topic><topic>trapping</topic><topic>Wide band gap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazir, Mohammad Sajid</creatorcontrib><creatorcontrib>Kushwaha, Pragya</creatorcontrib><creatorcontrib>Pampori, Ahtisham</creatorcontrib><creatorcontrib>Ahsan, Sheikh Aamir</creatorcontrib><creatorcontrib>Chauhan, Yogesh Singh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nazir, Mohammad Sajid</au><au>Kushwaha, Pragya</au><au>Pampori, Ahtisham</au><au>Ahsan, Sheikh Aamir</au><au>Chauhan, Yogesh Singh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical Characterization and Modeling of GaN HEMTs at Cryogenic Temperatures</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>69</volume><issue>11</issue><spage>6016</spage><epage>6022</epage><pages>6016-6022</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[In this work, we present a phenomenological cryogenic model for gallium nitride (GaN) high electron mobility transistors (HEMTs) with validity all the way down to a temperature of 10 K, benchmarked with experimental characterization results. The device under test (DUT) for cryogenic characterization is a GaN HEMT with a channel length of 250 nm and a gate width of <inline-formula> <tex-math notation="LaTeX">40~\mu \text{m} </tex-math></inline-formula>. The characterization results exhibit the negative threshold voltage shifts of −3.437, −3.087, and −2.998 V at the temperatures of 300, 60, and 10 K, respectively. Additionally, kink effects at cryogenic temperatures in output characteristics are observed that behave non-monotonically with gate-to-source bias. The impact of detrapping is modeled to investigate the negative shift in <inline-formula> <tex-math notation="LaTeX">{V}_{\text {TH}} </tex-math></inline-formula> with increasing temperature. To model the kink, the effects of temperature, impact ionization, and field-dependent trapping/detrapping on <inline-formula> <tex-math notation="LaTeX">{V}_{\text {TH}} </tex-math></inline-formula> have been explored and implemented as a submodel in the industry standard Advanced SPICE Model (ASM)-HEMT framework. Here, we aim to overcome the limitations of the prior GaN device models in the quest for enabling GaN-based circuits for cryogenic applications, such as deep space reception, radio astronomy, and quantum computing.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3204523</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0303-4914</orcidid><orcidid>https://orcid.org/0000-0001-7758-6239</orcidid><orcidid>https://orcid.org/0000-0002-6575-2241</orcidid><orcidid>https://orcid.org/0000-0002-3356-8917</orcidid><orcidid>https://orcid.org/0000-0003-3759-6066</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2022-11, Vol.69 (11), p.6016-6022 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_journals_2727045462 |
source | IEEE Electronic Library (IEL) |
subjects | Advanced SPICE Model (ASM)-HEMT aluminium gallium nitride (AlGaN)/gallium nitride (GaN) high electron mobility transistor (HEMT) Aluminum gallium nitride cryogenic Cryogenic engineering Cryogenic temperature Cryogenics Deep space Electrical properties Gallium nitride Gallium nitrides HEMTs High electron mobility transistors Industry standards kink MODFETs Quantum computing Radio astronomy Semiconductor devices Temperature Temperature dependence Temperature effects Threshold voltage threshold voltage (TH) trapping Wide band gap semiconductors |
title | Electrical Characterization and Modeling of GaN HEMTs at Cryogenic Temperatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T16%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20Characterization%20and%20Modeling%20of%20GaN%20HEMTs%20at%20Cryogenic%20Temperatures&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Nazir,%20Mohammad%20Sajid&rft.date=2022-11-01&rft.volume=69&rft.issue=11&rft.spage=6016&rft.epage=6022&rft.pages=6016-6022&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3204523&rft_dat=%3Cproquest_RIE%3E2727045462%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727045462&rft_id=info:pmid/&rft_ieee_id=9896842&rfr_iscdi=true |