Differentially Private -Means Clustering Applied to Meter Data Analysis and Synthesis

The proliferation of smart meters has resulted in a large amount of data being generated. It is increasingly apparent that methods are required for allowing a variety of stakeholders to leverage the data in a manner that preserves the privacy of the consumers. The sector is scrambling to define poli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2022-01, Vol.13 (6), p.4801
Hauptverfasser: Ravi, Nikhil, Scaglione, Anna, Kadam, Sachin, Gentz, Reinhard, Peisert, Sean, Lunghino, Brent, Levijarvi, Emmanuel, Shumavon, Aram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 4801
container_title IEEE transactions on smart grid
container_volume 13
creator Ravi, Nikhil
Scaglione, Anna
Kadam, Sachin
Gentz, Reinhard
Peisert, Sean
Lunghino, Brent
Levijarvi, Emmanuel
Shumavon, Aram
description The proliferation of smart meters has resulted in a large amount of data being generated. It is increasingly apparent that methods are required for allowing a variety of stakeholders to leverage the data in a manner that preserves the privacy of the consumers. The sector is scrambling to define policies, such as the so called ‘15/15 rule’, to respond to the need. However, the current policies fail to adequately guarantee privacy. In this paper, we address the problem of allowing third parties to apply [Formula Omitted]-means clustering, obtaining customer labels and centroids for a set of load time series by applying the framework of differential privacy. We leverage the method to design an algorithm that generates differentially private synthetic load data consistent with the labeled data. We test our algorithm’s utility by answering summary statistics such as average daily load profiles for a 2-dimensional synthetic dataset and a real-world power load dataset.
doi_str_mv 10.1109/TSG.2022.3184252
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2727044881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2727044881</sourcerecordid><originalsourceid>FETCH-proquest_journals_27270448813</originalsourceid><addsrcrecordid>eNqNi70LwjAUxIMoKOru-MC5NR9V21H8XAqCOkvAV42EtOalQv97O4izt9z9jjvGJoLHQvBsdj7tY8mljJVIEzmXHTYQWZJFii9E95fnqs_GRE_eSim1kNmAXTamKNCjC0Zb28DRm7cOCFGO2hGsbU0BvXF3WFWVNXiDUEKObQcbHTSsnLYNGQLtbnBqXHhgSyPWK7QlHH99yKa77Xl9iCpfvmqkcH2WtW-vdJVLueRJkqZC_bf6ANy2R5I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727044881</pqid></control><display><type>article</type><title>Differentially Private -Means Clustering Applied to Meter Data Analysis and Synthesis</title><source>IEEE Electronic Library (IEL)</source><creator>Ravi, Nikhil ; Scaglione, Anna ; Kadam, Sachin ; Gentz, Reinhard ; Peisert, Sean ; Lunghino, Brent ; Levijarvi, Emmanuel ; Shumavon, Aram</creator><creatorcontrib>Ravi, Nikhil ; Scaglione, Anna ; Kadam, Sachin ; Gentz, Reinhard ; Peisert, Sean ; Lunghino, Brent ; Levijarvi, Emmanuel ; Shumavon, Aram</creatorcontrib><description>The proliferation of smart meters has resulted in a large amount of data being generated. It is increasingly apparent that methods are required for allowing a variety of stakeholders to leverage the data in a manner that preserves the privacy of the consumers. The sector is scrambling to define policies, such as the so called ‘15/15 rule’, to respond to the need. However, the current policies fail to adequately guarantee privacy. In this paper, we address the problem of allowing third parties to apply [Formula Omitted]-means clustering, obtaining customer labels and centroids for a set of load time series by applying the framework of differential privacy. We leverage the method to design an algorithm that generates differentially private synthetic load data consistent with the labeled data. We test our algorithm’s utility by answering summary statistics such as average daily load profiles for a 2-dimensional synthetic dataset and a real-world power load dataset.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2022.3184252</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Algorithms ; Centroids ; Clustering ; Data analysis ; Datasets ; Policies ; Privacy</subject><ispartof>IEEE transactions on smart grid, 2022-01, Vol.13 (6), p.4801</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ravi, Nikhil</creatorcontrib><creatorcontrib>Scaglione, Anna</creatorcontrib><creatorcontrib>Kadam, Sachin</creatorcontrib><creatorcontrib>Gentz, Reinhard</creatorcontrib><creatorcontrib>Peisert, Sean</creatorcontrib><creatorcontrib>Lunghino, Brent</creatorcontrib><creatorcontrib>Levijarvi, Emmanuel</creatorcontrib><creatorcontrib>Shumavon, Aram</creatorcontrib><title>Differentially Private -Means Clustering Applied to Meter Data Analysis and Synthesis</title><title>IEEE transactions on smart grid</title><description>The proliferation of smart meters has resulted in a large amount of data being generated. It is increasingly apparent that methods are required for allowing a variety of stakeholders to leverage the data in a manner that preserves the privacy of the consumers. The sector is scrambling to define policies, such as the so called ‘15/15 rule’, to respond to the need. However, the current policies fail to adequately guarantee privacy. In this paper, we address the problem of allowing third parties to apply [Formula Omitted]-means clustering, obtaining customer labels and centroids for a set of load time series by applying the framework of differential privacy. We leverage the method to design an algorithm that generates differentially private synthetic load data consistent with the labeled data. We test our algorithm’s utility by answering summary statistics such as average daily load profiles for a 2-dimensional synthetic dataset and a real-world power load dataset.</description><subject>Algorithms</subject><subject>Centroids</subject><subject>Clustering</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Policies</subject><subject>Privacy</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNi70LwjAUxIMoKOru-MC5NR9V21H8XAqCOkvAV42EtOalQv97O4izt9z9jjvGJoLHQvBsdj7tY8mljJVIEzmXHTYQWZJFii9E95fnqs_GRE_eSim1kNmAXTamKNCjC0Zb28DRm7cOCFGO2hGsbU0BvXF3WFWVNXiDUEKObQcbHTSsnLYNGQLtbnBqXHhgSyPWK7QlHH99yKa77Xl9iCpfvmqkcH2WtW-vdJVLueRJkqZC_bf6ANy2R5I</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Ravi, Nikhil</creator><creator>Scaglione, Anna</creator><creator>Kadam, Sachin</creator><creator>Gentz, Reinhard</creator><creator>Peisert, Sean</creator><creator>Lunghino, Brent</creator><creator>Levijarvi, Emmanuel</creator><creator>Shumavon, Aram</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20220101</creationdate><title>Differentially Private -Means Clustering Applied to Meter Data Analysis and Synthesis</title><author>Ravi, Nikhil ; Scaglione, Anna ; Kadam, Sachin ; Gentz, Reinhard ; Peisert, Sean ; Lunghino, Brent ; Levijarvi, Emmanuel ; Shumavon, Aram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27270448813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Centroids</topic><topic>Clustering</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Policies</topic><topic>Privacy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravi, Nikhil</creatorcontrib><creatorcontrib>Scaglione, Anna</creatorcontrib><creatorcontrib>Kadam, Sachin</creatorcontrib><creatorcontrib>Gentz, Reinhard</creatorcontrib><creatorcontrib>Peisert, Sean</creatorcontrib><creatorcontrib>Lunghino, Brent</creatorcontrib><creatorcontrib>Levijarvi, Emmanuel</creatorcontrib><creatorcontrib>Shumavon, Aram</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravi, Nikhil</au><au>Scaglione, Anna</au><au>Kadam, Sachin</au><au>Gentz, Reinhard</au><au>Peisert, Sean</au><au>Lunghino, Brent</au><au>Levijarvi, Emmanuel</au><au>Shumavon, Aram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentially Private -Means Clustering Applied to Meter Data Analysis and Synthesis</atitle><jtitle>IEEE transactions on smart grid</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>13</volume><issue>6</issue><spage>4801</spage><pages>4801-</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><abstract>The proliferation of smart meters has resulted in a large amount of data being generated. It is increasingly apparent that methods are required for allowing a variety of stakeholders to leverage the data in a manner that preserves the privacy of the consumers. The sector is scrambling to define policies, such as the so called ‘15/15 rule’, to respond to the need. However, the current policies fail to adequately guarantee privacy. In this paper, we address the problem of allowing third parties to apply [Formula Omitted]-means clustering, obtaining customer labels and centroids for a set of load time series by applying the framework of differential privacy. We leverage the method to design an algorithm that generates differentially private synthetic load data consistent with the labeled data. We test our algorithm’s utility by answering summary statistics such as average daily load profiles for a 2-dimensional synthetic dataset and a real-world power load dataset.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TSG.2022.3184252</doi></addata></record>
fulltext fulltext
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2022-01, Vol.13 (6), p.4801
issn 1949-3053
1949-3061
language eng
recordid cdi_proquest_journals_2727044881
source IEEE Electronic Library (IEL)
subjects Algorithms
Centroids
Clustering
Data analysis
Datasets
Policies
Privacy
title Differentially Private -Means Clustering Applied to Meter Data Analysis and Synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentially%20Private%20-Means%20Clustering%20Applied%20to%20Meter%20Data%20Analysis%20and%20Synthesis&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Ravi,%20Nikhil&rft.date=2022-01-01&rft.volume=13&rft.issue=6&rft.spage=4801&rft.pages=4801-&rft.issn=1949-3053&rft.eissn=1949-3061&rft_id=info:doi/10.1109/TSG.2022.3184252&rft_dat=%3Cproquest%3E2727044881%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727044881&rft_id=info:pmid/&rfr_iscdi=true