Differentially Private -Means Clustering Applied to Meter Data Analysis and Synthesis
The proliferation of smart meters has resulted in a large amount of data being generated. It is increasingly apparent that methods are required for allowing a variety of stakeholders to leverage the data in a manner that preserves the privacy of the consumers. The sector is scrambling to define poli...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2022-01, Vol.13 (6), p.4801 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 4801 |
container_title | IEEE transactions on smart grid |
container_volume | 13 |
creator | Ravi, Nikhil Scaglione, Anna Kadam, Sachin Gentz, Reinhard Peisert, Sean Lunghino, Brent Levijarvi, Emmanuel Shumavon, Aram |
description | The proliferation of smart meters has resulted in a large amount of data being generated. It is increasingly apparent that methods are required for allowing a variety of stakeholders to leverage the data in a manner that preserves the privacy of the consumers. The sector is scrambling to define policies, such as the so called ‘15/15 rule’, to respond to the need. However, the current policies fail to adequately guarantee privacy. In this paper, we address the problem of allowing third parties to apply [Formula Omitted]-means clustering, obtaining customer labels and centroids for a set of load time series by applying the framework of differential privacy. We leverage the method to design an algorithm that generates differentially private synthetic load data consistent with the labeled data. We test our algorithm’s utility by answering summary statistics such as average daily load profiles for a 2-dimensional synthetic dataset and a real-world power load dataset. |
doi_str_mv | 10.1109/TSG.2022.3184252 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2727044881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2727044881</sourcerecordid><originalsourceid>FETCH-proquest_journals_27270448813</originalsourceid><addsrcrecordid>eNqNi70LwjAUxIMoKOru-MC5NR9V21H8XAqCOkvAV42EtOalQv97O4izt9z9jjvGJoLHQvBsdj7tY8mljJVIEzmXHTYQWZJFii9E95fnqs_GRE_eSim1kNmAXTamKNCjC0Zb28DRm7cOCFGO2hGsbU0BvXF3WFWVNXiDUEKObQcbHTSsnLYNGQLtbnBqXHhgSyPWK7QlHH99yKa77Xl9iCpfvmqkcH2WtW-vdJVLueRJkqZC_bf6ANy2R5I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727044881</pqid></control><display><type>article</type><title>Differentially Private -Means Clustering Applied to Meter Data Analysis and Synthesis</title><source>IEEE Electronic Library (IEL)</source><creator>Ravi, Nikhil ; Scaglione, Anna ; Kadam, Sachin ; Gentz, Reinhard ; Peisert, Sean ; Lunghino, Brent ; Levijarvi, Emmanuel ; Shumavon, Aram</creator><creatorcontrib>Ravi, Nikhil ; Scaglione, Anna ; Kadam, Sachin ; Gentz, Reinhard ; Peisert, Sean ; Lunghino, Brent ; Levijarvi, Emmanuel ; Shumavon, Aram</creatorcontrib><description>The proliferation of smart meters has resulted in a large amount of data being generated. It is increasingly apparent that methods are required for allowing a variety of stakeholders to leverage the data in a manner that preserves the privacy of the consumers. The sector is scrambling to define policies, such as the so called ‘15/15 rule’, to respond to the need. However, the current policies fail to adequately guarantee privacy. In this paper, we address the problem of allowing third parties to apply [Formula Omitted]-means clustering, obtaining customer labels and centroids for a set of load time series by applying the framework of differential privacy. We leverage the method to design an algorithm that generates differentially private synthetic load data consistent with the labeled data. We test our algorithm’s utility by answering summary statistics such as average daily load profiles for a 2-dimensional synthetic dataset and a real-world power load dataset.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2022.3184252</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Algorithms ; Centroids ; Clustering ; Data analysis ; Datasets ; Policies ; Privacy</subject><ispartof>IEEE transactions on smart grid, 2022-01, Vol.13 (6), p.4801</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ravi, Nikhil</creatorcontrib><creatorcontrib>Scaglione, Anna</creatorcontrib><creatorcontrib>Kadam, Sachin</creatorcontrib><creatorcontrib>Gentz, Reinhard</creatorcontrib><creatorcontrib>Peisert, Sean</creatorcontrib><creatorcontrib>Lunghino, Brent</creatorcontrib><creatorcontrib>Levijarvi, Emmanuel</creatorcontrib><creatorcontrib>Shumavon, Aram</creatorcontrib><title>Differentially Private -Means Clustering Applied to Meter Data Analysis and Synthesis</title><title>IEEE transactions on smart grid</title><description>The proliferation of smart meters has resulted in a large amount of data being generated. It is increasingly apparent that methods are required for allowing a variety of stakeholders to leverage the data in a manner that preserves the privacy of the consumers. The sector is scrambling to define policies, such as the so called ‘15/15 rule’, to respond to the need. However, the current policies fail to adequately guarantee privacy. In this paper, we address the problem of allowing third parties to apply [Formula Omitted]-means clustering, obtaining customer labels and centroids for a set of load time series by applying the framework of differential privacy. We leverage the method to design an algorithm that generates differentially private synthetic load data consistent with the labeled data. We test our algorithm’s utility by answering summary statistics such as average daily load profiles for a 2-dimensional synthetic dataset and a real-world power load dataset.</description><subject>Algorithms</subject><subject>Centroids</subject><subject>Clustering</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Policies</subject><subject>Privacy</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNi70LwjAUxIMoKOru-MC5NR9V21H8XAqCOkvAV42EtOalQv97O4izt9z9jjvGJoLHQvBsdj7tY8mljJVIEzmXHTYQWZJFii9E95fnqs_GRE_eSim1kNmAXTamKNCjC0Zb28DRm7cOCFGO2hGsbU0BvXF3WFWVNXiDUEKObQcbHTSsnLYNGQLtbnBqXHhgSyPWK7QlHH99yKa77Xl9iCpfvmqkcH2WtW-vdJVLueRJkqZC_bf6ANy2R5I</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Ravi, Nikhil</creator><creator>Scaglione, Anna</creator><creator>Kadam, Sachin</creator><creator>Gentz, Reinhard</creator><creator>Peisert, Sean</creator><creator>Lunghino, Brent</creator><creator>Levijarvi, Emmanuel</creator><creator>Shumavon, Aram</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20220101</creationdate><title>Differentially Private -Means Clustering Applied to Meter Data Analysis and Synthesis</title><author>Ravi, Nikhil ; Scaglione, Anna ; Kadam, Sachin ; Gentz, Reinhard ; Peisert, Sean ; Lunghino, Brent ; Levijarvi, Emmanuel ; Shumavon, Aram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27270448813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Centroids</topic><topic>Clustering</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Policies</topic><topic>Privacy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravi, Nikhil</creatorcontrib><creatorcontrib>Scaglione, Anna</creatorcontrib><creatorcontrib>Kadam, Sachin</creatorcontrib><creatorcontrib>Gentz, Reinhard</creatorcontrib><creatorcontrib>Peisert, Sean</creatorcontrib><creatorcontrib>Lunghino, Brent</creatorcontrib><creatorcontrib>Levijarvi, Emmanuel</creatorcontrib><creatorcontrib>Shumavon, Aram</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravi, Nikhil</au><au>Scaglione, Anna</au><au>Kadam, Sachin</au><au>Gentz, Reinhard</au><au>Peisert, Sean</au><au>Lunghino, Brent</au><au>Levijarvi, Emmanuel</au><au>Shumavon, Aram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentially Private -Means Clustering Applied to Meter Data Analysis and Synthesis</atitle><jtitle>IEEE transactions on smart grid</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>13</volume><issue>6</issue><spage>4801</spage><pages>4801-</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><abstract>The proliferation of smart meters has resulted in a large amount of data being generated. It is increasingly apparent that methods are required for allowing a variety of stakeholders to leverage the data in a manner that preserves the privacy of the consumers. The sector is scrambling to define policies, such as the so called ‘15/15 rule’, to respond to the need. However, the current policies fail to adequately guarantee privacy. In this paper, we address the problem of allowing third parties to apply [Formula Omitted]-means clustering, obtaining customer labels and centroids for a set of load time series by applying the framework of differential privacy. We leverage the method to design an algorithm that generates differentially private synthetic load data consistent with the labeled data. We test our algorithm’s utility by answering summary statistics such as average daily load profiles for a 2-dimensional synthetic dataset and a real-world power load dataset.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TSG.2022.3184252</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2022-01, Vol.13 (6), p.4801 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_proquest_journals_2727044881 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Centroids Clustering Data analysis Datasets Policies Privacy |
title | Differentially Private -Means Clustering Applied to Meter Data Analysis and Synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentially%20Private%20-Means%20Clustering%20Applied%20to%20Meter%20Data%20Analysis%20and%20Synthesis&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Ravi,%20Nikhil&rft.date=2022-01-01&rft.volume=13&rft.issue=6&rft.spage=4801&rft.pages=4801-&rft.issn=1949-3053&rft.eissn=1949-3061&rft_id=info:doi/10.1109/TSG.2022.3184252&rft_dat=%3Cproquest%3E2727044881%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727044881&rft_id=info:pmid/&rfr_iscdi=true |