Scenario Model Predictive Control for Data-Based Energy Management in Plug-In Hybrid Electric Vehicles
One of the major limitations of optimization-based strategies for allocating the power flow in hybrid powertrains is that they rely on predictions of future power demand. These predictions are inherently uncertain as they are dependent on complex human behaviors that are challenging to model accurat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2022-11, Vol.30 (6), p.2522-2533 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2533 |
---|---|
container_issue | 6 |
container_start_page | 2522 |
container_title | IEEE transactions on control systems technology |
container_volume | 30 |
creator | East, Sebastian Cannon, Mark |
description | One of the major limitations of optimization-based strategies for allocating the power flow in hybrid powertrains is that they rely on predictions of future power demand. These predictions are inherently uncertain as they are dependent on complex human behaviors that are challenging to model accurately. This article proposes a data-based scenario model predictive control (MPC) framework, where the inputs are determined at each control update by optimizing the power allocation over multiple previous examples of a route being driven. The proposed energy management optimization is convex, and results from scenario optimization are used to bound the confidence that the one-step-ahead optimization will be feasible with given probability. It is shown through numerical simulation that scenario MPC obtains the same reduction in fuel consumption as nominal MPC with full preview of future driver behavior and that the scenario MPC optimization can be solved efficiently using a tailored optimization algorithm. |
doi_str_mv | 10.1109/TCST.2022.3154155 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2727043311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9737697</ieee_id><sourcerecordid>2727043311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-397785b2734e22fe5747baeb73d42956fab6c8f2f8438e1097c3b0b34ebf23353</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-AOOliefFfmy3u0ddUUggkoBem253iiXLLraLCf_eEoiXmTk870zmQeiekhGlpHhalcvViBHGRpyKlApxgQax5gnJM3EZZ5LxJBM8u0Y3IWwIoalgcoDs0kCrvevwvKuhwQsPtTO9-wVcdm3vuwbbzuNX3evkRQeo8bgFvz7guW71GrbQ9ti1eNHs18m0xZND5V1kGjC9dwZ_wbczDYRbdGV1E-Du3Ifo8228KifJ7ON9Wj7PEsN51ie8kDIXFZM8BcYsCJnKSkMleZ2yQmRWV5nJLbN5ynOIf0vDK1JFurKMc8GH6PG0d-e7nz2EXm26vW_jScUkkyTlnNJI0RNlfBeCB6t23m21PyhK1FGnOupUR53qrDNmHk4ZBwD_fCG5zGL5A_TAcEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727043311</pqid></control><display><type>article</type><title>Scenario Model Predictive Control for Data-Based Energy Management in Plug-In Hybrid Electric Vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>East, Sebastian ; Cannon, Mark</creator><creatorcontrib>East, Sebastian ; Cannon, Mark</creatorcontrib><description>One of the major limitations of optimization-based strategies for allocating the power flow in hybrid powertrains is that they rely on predictions of future power demand. These predictions are inherently uncertain as they are dependent on complex human behaviors that are challenging to model accurately. This article proposes a data-based scenario model predictive control (MPC) framework, where the inputs are determined at each control update by optimizing the power allocation over multiple previous examples of a route being driven. The proposed energy management optimization is convex, and results from scenario optimization are used to bound the confidence that the one-step-ahead optimization will be feasible with given probability. It is shown through numerical simulation that scenario MPC obtains the same reduction in fuel consumption as nominal MPC with full preview of future driver behavior and that the scenario MPC optimization can be solved efficiently using a tailored optimization algorithm.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2022.3154155</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Driver behavior ; Energy management ; Human behavior ; Hybrid and electric vehicles ; Hybrid electric vehicles ; Mathematical models ; Nonlinear systems ; Optimization ; optimization algorithms ; Plug-in hybrid electric vehicles ; Power flow ; Powertrain ; Predictive control ; predictive control for nonlinear systems</subject><ispartof>IEEE transactions on control systems technology, 2022-11, Vol.30 (6), p.2522-2533</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-397785b2734e22fe5747baeb73d42956fab6c8f2f8438e1097c3b0b34ebf23353</citedby><orcidid>0000-0001-9383-2815 ; 0000-0003-2189-7876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9737697$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9737697$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>East, Sebastian</creatorcontrib><creatorcontrib>Cannon, Mark</creatorcontrib><title>Scenario Model Predictive Control for Data-Based Energy Management in Plug-In Hybrid Electric Vehicles</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>One of the major limitations of optimization-based strategies for allocating the power flow in hybrid powertrains is that they rely on predictions of future power demand. These predictions are inherently uncertain as they are dependent on complex human behaviors that are challenging to model accurately. This article proposes a data-based scenario model predictive control (MPC) framework, where the inputs are determined at each control update by optimizing the power allocation over multiple previous examples of a route being driven. The proposed energy management optimization is convex, and results from scenario optimization are used to bound the confidence that the one-step-ahead optimization will be feasible with given probability. It is shown through numerical simulation that scenario MPC obtains the same reduction in fuel consumption as nominal MPC with full preview of future driver behavior and that the scenario MPC optimization can be solved efficiently using a tailored optimization algorithm.</description><subject>Algorithms</subject><subject>Driver behavior</subject><subject>Energy management</subject><subject>Human behavior</subject><subject>Hybrid and electric vehicles</subject><subject>Hybrid electric vehicles</subject><subject>Mathematical models</subject><subject>Nonlinear systems</subject><subject>Optimization</subject><subject>optimization algorithms</subject><subject>Plug-in hybrid electric vehicles</subject><subject>Power flow</subject><subject>Powertrain</subject><subject>Predictive control</subject><subject>predictive control for nonlinear systems</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYj-AOOliefFfmy3u0ddUUggkoBem253iiXLLraLCf_eEoiXmTk870zmQeiekhGlpHhalcvViBHGRpyKlApxgQax5gnJM3EZZ5LxJBM8u0Y3IWwIoalgcoDs0kCrvevwvKuhwQsPtTO9-wVcdm3vuwbbzuNX3evkRQeo8bgFvz7guW71GrbQ9ti1eNHs18m0xZND5V1kGjC9dwZ_wbczDYRbdGV1E-Du3Ifo8228KifJ7ON9Wj7PEsN51ie8kDIXFZM8BcYsCJnKSkMleZ2yQmRWV5nJLbN5ynOIf0vDK1JFurKMc8GH6PG0d-e7nz2EXm26vW_jScUkkyTlnNJI0RNlfBeCB6t23m21PyhK1FGnOupUR53qrDNmHk4ZBwD_fCG5zGL5A_TAcEQ</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>East, Sebastian</creator><creator>Cannon, Mark</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9383-2815</orcidid><orcidid>https://orcid.org/0000-0003-2189-7876</orcidid></search><sort><creationdate>202211</creationdate><title>Scenario Model Predictive Control for Data-Based Energy Management in Plug-In Hybrid Electric Vehicles</title><author>East, Sebastian ; Cannon, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-397785b2734e22fe5747baeb73d42956fab6c8f2f8438e1097c3b0b34ebf23353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Driver behavior</topic><topic>Energy management</topic><topic>Human behavior</topic><topic>Hybrid and electric vehicles</topic><topic>Hybrid electric vehicles</topic><topic>Mathematical models</topic><topic>Nonlinear systems</topic><topic>Optimization</topic><topic>optimization algorithms</topic><topic>Plug-in hybrid electric vehicles</topic><topic>Power flow</topic><topic>Powertrain</topic><topic>Predictive control</topic><topic>predictive control for nonlinear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>East, Sebastian</creatorcontrib><creatorcontrib>Cannon, Mark</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>East, Sebastian</au><au>Cannon, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scenario Model Predictive Control for Data-Based Energy Management in Plug-In Hybrid Electric Vehicles</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2022-11</date><risdate>2022</risdate><volume>30</volume><issue>6</issue><spage>2522</spage><epage>2533</epage><pages>2522-2533</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>One of the major limitations of optimization-based strategies for allocating the power flow in hybrid powertrains is that they rely on predictions of future power demand. These predictions are inherently uncertain as they are dependent on complex human behaviors that are challenging to model accurately. This article proposes a data-based scenario model predictive control (MPC) framework, where the inputs are determined at each control update by optimizing the power allocation over multiple previous examples of a route being driven. The proposed energy management optimization is convex, and results from scenario optimization are used to bound the confidence that the one-step-ahead optimization will be feasible with given probability. It is shown through numerical simulation that scenario MPC obtains the same reduction in fuel consumption as nominal MPC with full preview of future driver behavior and that the scenario MPC optimization can be solved efficiently using a tailored optimization algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2022.3154155</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9383-2815</orcidid><orcidid>https://orcid.org/0000-0003-2189-7876</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2022-11, Vol.30 (6), p.2522-2533 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_proquest_journals_2727043311 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Driver behavior Energy management Human behavior Hybrid and electric vehicles Hybrid electric vehicles Mathematical models Nonlinear systems Optimization optimization algorithms Plug-in hybrid electric vehicles Power flow Powertrain Predictive control predictive control for nonlinear systems |
title | Scenario Model Predictive Control for Data-Based Energy Management in Plug-In Hybrid Electric Vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scenario%20Model%20Predictive%20Control%20for%20Data-Based%20Energy%20Management%20in%20Plug-In%20Hybrid%20Electric%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=East,%20Sebastian&rft.date=2022-11&rft.volume=30&rft.issue=6&rft.spage=2522&rft.epage=2533&rft.pages=2522-2533&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2022.3154155&rft_dat=%3Cproquest_RIE%3E2727043311%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727043311&rft_id=info:pmid/&rft_ieee_id=9737697&rfr_iscdi=true |