Scenario Model Predictive Control for Data-Based Energy Management in Plug-In Hybrid Electric Vehicles

One of the major limitations of optimization-based strategies for allocating the power flow in hybrid powertrains is that they rely on predictions of future power demand. These predictions are inherently uncertain as they are dependent on complex human behaviors that are challenging to model accurat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2022-11, Vol.30 (6), p.2522-2533
Hauptverfasser: East, Sebastian, Cannon, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2533
container_issue 6
container_start_page 2522
container_title IEEE transactions on control systems technology
container_volume 30
creator East, Sebastian
Cannon, Mark
description One of the major limitations of optimization-based strategies for allocating the power flow in hybrid powertrains is that they rely on predictions of future power demand. These predictions are inherently uncertain as they are dependent on complex human behaviors that are challenging to model accurately. This article proposes a data-based scenario model predictive control (MPC) framework, where the inputs are determined at each control update by optimizing the power allocation over multiple previous examples of a route being driven. The proposed energy management optimization is convex, and results from scenario optimization are used to bound the confidence that the one-step-ahead optimization will be feasible with given probability. It is shown through numerical simulation that scenario MPC obtains the same reduction in fuel consumption as nominal MPC with full preview of future driver behavior and that the scenario MPC optimization can be solved efficiently using a tailored optimization algorithm.
doi_str_mv 10.1109/TCST.2022.3154155
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2727043311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9737697</ieee_id><sourcerecordid>2727043311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-397785b2734e22fe5747baeb73d42956fab6c8f2f8438e1097c3b0b34ebf23353</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-AOOliefFfmy3u0ddUUggkoBem253iiXLLraLCf_eEoiXmTk870zmQeiekhGlpHhalcvViBHGRpyKlApxgQax5gnJM3EZZ5LxJBM8u0Y3IWwIoalgcoDs0kCrvevwvKuhwQsPtTO9-wVcdm3vuwbbzuNX3evkRQeo8bgFvz7guW71GrbQ9ti1eNHs18m0xZND5V1kGjC9dwZ_wbczDYRbdGV1E-Du3Ifo8228KifJ7ON9Wj7PEsN51ie8kDIXFZM8BcYsCJnKSkMleZ2yQmRWV5nJLbN5ynOIf0vDK1JFurKMc8GH6PG0d-e7nz2EXm26vW_jScUkkyTlnNJI0RNlfBeCB6t23m21PyhK1FGnOupUR53qrDNmHk4ZBwD_fCG5zGL5A_TAcEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727043311</pqid></control><display><type>article</type><title>Scenario Model Predictive Control for Data-Based Energy Management in Plug-In Hybrid Electric Vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>East, Sebastian ; Cannon, Mark</creator><creatorcontrib>East, Sebastian ; Cannon, Mark</creatorcontrib><description>One of the major limitations of optimization-based strategies for allocating the power flow in hybrid powertrains is that they rely on predictions of future power demand. These predictions are inherently uncertain as they are dependent on complex human behaviors that are challenging to model accurately. This article proposes a data-based scenario model predictive control (MPC) framework, where the inputs are determined at each control update by optimizing the power allocation over multiple previous examples of a route being driven. The proposed energy management optimization is convex, and results from scenario optimization are used to bound the confidence that the one-step-ahead optimization will be feasible with given probability. It is shown through numerical simulation that scenario MPC obtains the same reduction in fuel consumption as nominal MPC with full preview of future driver behavior and that the scenario MPC optimization can be solved efficiently using a tailored optimization algorithm.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2022.3154155</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Driver behavior ; Energy management ; Human behavior ; Hybrid and electric vehicles ; Hybrid electric vehicles ; Mathematical models ; Nonlinear systems ; Optimization ; optimization algorithms ; Plug-in hybrid electric vehicles ; Power flow ; Powertrain ; Predictive control ; predictive control for nonlinear systems</subject><ispartof>IEEE transactions on control systems technology, 2022-11, Vol.30 (6), p.2522-2533</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-397785b2734e22fe5747baeb73d42956fab6c8f2f8438e1097c3b0b34ebf23353</citedby><orcidid>0000-0001-9383-2815 ; 0000-0003-2189-7876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9737697$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9737697$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>East, Sebastian</creatorcontrib><creatorcontrib>Cannon, Mark</creatorcontrib><title>Scenario Model Predictive Control for Data-Based Energy Management in Plug-In Hybrid Electric Vehicles</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>One of the major limitations of optimization-based strategies for allocating the power flow in hybrid powertrains is that they rely on predictions of future power demand. These predictions are inherently uncertain as they are dependent on complex human behaviors that are challenging to model accurately. This article proposes a data-based scenario model predictive control (MPC) framework, where the inputs are determined at each control update by optimizing the power allocation over multiple previous examples of a route being driven. The proposed energy management optimization is convex, and results from scenario optimization are used to bound the confidence that the one-step-ahead optimization will be feasible with given probability. It is shown through numerical simulation that scenario MPC obtains the same reduction in fuel consumption as nominal MPC with full preview of future driver behavior and that the scenario MPC optimization can be solved efficiently using a tailored optimization algorithm.</description><subject>Algorithms</subject><subject>Driver behavior</subject><subject>Energy management</subject><subject>Human behavior</subject><subject>Hybrid and electric vehicles</subject><subject>Hybrid electric vehicles</subject><subject>Mathematical models</subject><subject>Nonlinear systems</subject><subject>Optimization</subject><subject>optimization algorithms</subject><subject>Plug-in hybrid electric vehicles</subject><subject>Power flow</subject><subject>Powertrain</subject><subject>Predictive control</subject><subject>predictive control for nonlinear systems</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYj-AOOliefFfmy3u0ddUUggkoBem253iiXLLraLCf_eEoiXmTk870zmQeiekhGlpHhalcvViBHGRpyKlApxgQax5gnJM3EZZ5LxJBM8u0Y3IWwIoalgcoDs0kCrvevwvKuhwQsPtTO9-wVcdm3vuwbbzuNX3evkRQeo8bgFvz7guW71GrbQ9ti1eNHs18m0xZND5V1kGjC9dwZ_wbczDYRbdGV1E-Du3Ifo8228KifJ7ON9Wj7PEsN51ie8kDIXFZM8BcYsCJnKSkMleZ2yQmRWV5nJLbN5ynOIf0vDK1JFurKMc8GH6PG0d-e7nz2EXm26vW_jScUkkyTlnNJI0RNlfBeCB6t23m21PyhK1FGnOupUR53qrDNmHk4ZBwD_fCG5zGL5A_TAcEQ</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>East, Sebastian</creator><creator>Cannon, Mark</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9383-2815</orcidid><orcidid>https://orcid.org/0000-0003-2189-7876</orcidid></search><sort><creationdate>202211</creationdate><title>Scenario Model Predictive Control for Data-Based Energy Management in Plug-In Hybrid Electric Vehicles</title><author>East, Sebastian ; Cannon, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-397785b2734e22fe5747baeb73d42956fab6c8f2f8438e1097c3b0b34ebf23353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Driver behavior</topic><topic>Energy management</topic><topic>Human behavior</topic><topic>Hybrid and electric vehicles</topic><topic>Hybrid electric vehicles</topic><topic>Mathematical models</topic><topic>Nonlinear systems</topic><topic>Optimization</topic><topic>optimization algorithms</topic><topic>Plug-in hybrid electric vehicles</topic><topic>Power flow</topic><topic>Powertrain</topic><topic>Predictive control</topic><topic>predictive control for nonlinear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>East, Sebastian</creatorcontrib><creatorcontrib>Cannon, Mark</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>East, Sebastian</au><au>Cannon, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scenario Model Predictive Control for Data-Based Energy Management in Plug-In Hybrid Electric Vehicles</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2022-11</date><risdate>2022</risdate><volume>30</volume><issue>6</issue><spage>2522</spage><epage>2533</epage><pages>2522-2533</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>One of the major limitations of optimization-based strategies for allocating the power flow in hybrid powertrains is that they rely on predictions of future power demand. These predictions are inherently uncertain as they are dependent on complex human behaviors that are challenging to model accurately. This article proposes a data-based scenario model predictive control (MPC) framework, where the inputs are determined at each control update by optimizing the power allocation over multiple previous examples of a route being driven. The proposed energy management optimization is convex, and results from scenario optimization are used to bound the confidence that the one-step-ahead optimization will be feasible with given probability. It is shown through numerical simulation that scenario MPC obtains the same reduction in fuel consumption as nominal MPC with full preview of future driver behavior and that the scenario MPC optimization can be solved efficiently using a tailored optimization algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2022.3154155</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9383-2815</orcidid><orcidid>https://orcid.org/0000-0003-2189-7876</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2022-11, Vol.30 (6), p.2522-2533
issn 1063-6536
1558-0865
language eng
recordid cdi_proquest_journals_2727043311
source IEEE Electronic Library (IEL)
subjects Algorithms
Driver behavior
Energy management
Human behavior
Hybrid and electric vehicles
Hybrid electric vehicles
Mathematical models
Nonlinear systems
Optimization
optimization algorithms
Plug-in hybrid electric vehicles
Power flow
Powertrain
Predictive control
predictive control for nonlinear systems
title Scenario Model Predictive Control for Data-Based Energy Management in Plug-In Hybrid Electric Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scenario%20Model%20Predictive%20Control%20for%20Data-Based%20Energy%20Management%20in%20Plug-In%20Hybrid%20Electric%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=East,%20Sebastian&rft.date=2022-11&rft.volume=30&rft.issue=6&rft.spage=2522&rft.epage=2533&rft.pages=2522-2533&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2022.3154155&rft_dat=%3Cproquest_RIE%3E2727043311%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727043311&rft_id=info:pmid/&rft_ieee_id=9737697&rfr_iscdi=true