Investigation of thermal behaviour of structural steel S235N under laser cutting process: Experimental, analytical, and numerical studies
Laser cutting represents an appealing solution for high machining speed and precision in steel constructions. To control the efficiency of laser cutting, the effects of laser heating must be understood; and to investigate thermal effects on a steel workpiece, a methodological approach for analytical...
Gespeichert in:
Veröffentlicht in: | Engineering structures 2022-10, Vol.269, p.114754, Article 114754 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 114754 |
container_title | Engineering structures |
container_volume | 269 |
creator | Shamlooei, Majid Zanon, Gabriele Valli, Alberto Bison, Paolo Bursi, Oreste S. |
description | Laser cutting represents an appealing solution for high machining speed and precision in steel constructions. To control the efficiency of laser cutting, the effects of laser heating must be understood; and to investigate thermal effects on a steel workpiece, a methodological approach for analytical modeling of laser cutting heat source is proposed herein. The proposed model takes into account laser source geometry variation along the cut edge thickness. Given the complexity of the analyzed process, there is no accurate mathematical formulation capable of modelling both heat flux and temperature distribution. Therefore, to model heat flux with an accurate temperature distribution field and both calibrate and validate solid phases of a cut specimen, the paper proposes a modified heat source based on a Gaussian distribution. The study focuses on mild structural steel S235N and relevant commonly used laser cutting parameters for structural applications. More precisely, the model allows the laser cutting process to be simulated as a function of laser beam diameter, cutting speed, laser power and element thickness. Thus, to simulate the thermal process by means of a proper heat source, a model was implemented in the FE software Abaqus. Model parameters were both calibrated and validated through experimental results provided by online monitoring of laser cutting process with a thermal camera and location of microconstituents. In particular, the temperature profiles obtained from the proposed FE model, exhibit a good agreement with experimental results. Finally, the distribution of microconstituents along the depth agrees with predicted temperature profiles. |
doi_str_mv | 10.1016/j.engstruct.2022.114754 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726977146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029622008422</els_id><sourcerecordid>2726977146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-cb4128a7b3f8665358e221b33f4775dc216438fbf92f1e49d1e740c00ebf7b143</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMc3YIkrKX4lTrghxEtCcADOluOsi6vUKbZTwSfw17gEceWyu9qdHc0MQieUzCmh1flyDn4RUxhNmjPC2JxSIUuxg2a0lryQnPFdNCNU0IKwptpHBzEuCSGsrskMfd37DcTkFjq5wePB4vQGYaV73MKb3rhhDNvlxD-GvI8JoMfPjJePePQdBNzrmKsZU3J-gddhMBDjBb7-WENwK_BJ92dYe91_JmemucN-XOWr-SEcOwfxCO1Z3Uc4_u2H6PXm-uXqrnh4ur2_unwoDG9kKkwrKKu1bLmtq6rkZQ2M0ZZzK6QsO8NoJXhtW9swS0E0HQUpiCEEWitbKvghOp14s9D3MXtXy2wyq4uKSVY1UlJRZZScUCYMMQawap296PCpKFHb3NVS_eWutrmrKff8eTl9QjaxcRBUNA68gc4FyNhucP9yfAMrn5Ko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726977146</pqid></control><display><type>article</type><title>Investigation of thermal behaviour of structural steel S235N under laser cutting process: Experimental, analytical, and numerical studies</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Shamlooei, Majid ; Zanon, Gabriele ; Valli, Alberto ; Bison, Paolo ; Bursi, Oreste S.</creator><creatorcontrib>Shamlooei, Majid ; Zanon, Gabriele ; Valli, Alberto ; Bison, Paolo ; Bursi, Oreste S.</creatorcontrib><description>Laser cutting represents an appealing solution for high machining speed and precision in steel constructions. To control the efficiency of laser cutting, the effects of laser heating must be understood; and to investigate thermal effects on a steel workpiece, a methodological approach for analytical modeling of laser cutting heat source is proposed herein. The proposed model takes into account laser source geometry variation along the cut edge thickness. Given the complexity of the analyzed process, there is no accurate mathematical formulation capable of modelling both heat flux and temperature distribution. Therefore, to model heat flux with an accurate temperature distribution field and both calibrate and validate solid phases of a cut specimen, the paper proposes a modified heat source based on a Gaussian distribution. The study focuses on mild structural steel S235N and relevant commonly used laser cutting parameters for structural applications. More precisely, the model allows the laser cutting process to be simulated as a function of laser beam diameter, cutting speed, laser power and element thickness. Thus, to simulate the thermal process by means of a proper heat source, a model was implemented in the FE software Abaqus. Model parameters were both calibrated and validated through experimental results provided by online monitoring of laser cutting process with a thermal camera and location of microconstituents. In particular, the temperature profiles obtained from the proposed FE model, exhibit a good agreement with experimental results. Finally, the distribution of microconstituents along the depth agrees with predicted temperature profiles.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2022.114754</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Cutting parameters ; Cutting speed ; Cuttings ; Diameters ; FE modelling ; Finite element method ; Heat ; Heat flux ; Heat transfer ; Laser beam cutting ; Laser beam heating ; Lasers ; Machining ; Mathematical models ; Microconstituent location ; Normal distribution ; Oxygen-assisted laser cutting ; S235N structural steel ; Solid phases ; Steel ; Structural steels ; Temperature distribution ; Temperature effects ; Temperature profiles ; Thermal simulation ; Thermodynamic properties ; Thermographic monitoring ; Thickness ; Workpieces</subject><ispartof>Engineering structures, 2022-10, Vol.269, p.114754, Article 114754</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-cb4128a7b3f8665358e221b33f4775dc216438fbf92f1e49d1e740c00ebf7b143</citedby><cites>FETCH-LOGICAL-c397t-cb4128a7b3f8665358e221b33f4775dc216438fbf92f1e49d1e740c00ebf7b143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engstruct.2022.114754$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Shamlooei, Majid</creatorcontrib><creatorcontrib>Zanon, Gabriele</creatorcontrib><creatorcontrib>Valli, Alberto</creatorcontrib><creatorcontrib>Bison, Paolo</creatorcontrib><creatorcontrib>Bursi, Oreste S.</creatorcontrib><title>Investigation of thermal behaviour of structural steel S235N under laser cutting process: Experimental, analytical, and numerical studies</title><title>Engineering structures</title><description>Laser cutting represents an appealing solution for high machining speed and precision in steel constructions. To control the efficiency of laser cutting, the effects of laser heating must be understood; and to investigate thermal effects on a steel workpiece, a methodological approach for analytical modeling of laser cutting heat source is proposed herein. The proposed model takes into account laser source geometry variation along the cut edge thickness. Given the complexity of the analyzed process, there is no accurate mathematical formulation capable of modelling both heat flux and temperature distribution. Therefore, to model heat flux with an accurate temperature distribution field and both calibrate and validate solid phases of a cut specimen, the paper proposes a modified heat source based on a Gaussian distribution. The study focuses on mild structural steel S235N and relevant commonly used laser cutting parameters for structural applications. More precisely, the model allows the laser cutting process to be simulated as a function of laser beam diameter, cutting speed, laser power and element thickness. Thus, to simulate the thermal process by means of a proper heat source, a model was implemented in the FE software Abaqus. Model parameters were both calibrated and validated through experimental results provided by online monitoring of laser cutting process with a thermal camera and location of microconstituents. In particular, the temperature profiles obtained from the proposed FE model, exhibit a good agreement with experimental results. Finally, the distribution of microconstituents along the depth agrees with predicted temperature profiles.</description><subject>Cutting parameters</subject><subject>Cutting speed</subject><subject>Cuttings</subject><subject>Diameters</subject><subject>FE modelling</subject><subject>Finite element method</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Laser beam cutting</subject><subject>Laser beam heating</subject><subject>Lasers</subject><subject>Machining</subject><subject>Mathematical models</subject><subject>Microconstituent location</subject><subject>Normal distribution</subject><subject>Oxygen-assisted laser cutting</subject><subject>S235N structural steel</subject><subject>Solid phases</subject><subject>Steel</subject><subject>Structural steels</subject><subject>Temperature distribution</subject><subject>Temperature effects</subject><subject>Temperature profiles</subject><subject>Thermal simulation</subject><subject>Thermodynamic properties</subject><subject>Thermographic monitoring</subject><subject>Thickness</subject><subject>Workpieces</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMc3YIkrKX4lTrghxEtCcADOluOsi6vUKbZTwSfw17gEceWyu9qdHc0MQieUzCmh1flyDn4RUxhNmjPC2JxSIUuxg2a0lryQnPFdNCNU0IKwptpHBzEuCSGsrskMfd37DcTkFjq5wePB4vQGYaV73MKb3rhhDNvlxD-GvI8JoMfPjJePePQdBNzrmKsZU3J-gddhMBDjBb7-WENwK_BJ92dYe91_JmemucN-XOWr-SEcOwfxCO1Z3Uc4_u2H6PXm-uXqrnh4ur2_unwoDG9kKkwrKKu1bLmtq6rkZQ2M0ZZzK6QsO8NoJXhtW9swS0E0HQUpiCEEWitbKvghOp14s9D3MXtXy2wyq4uKSVY1UlJRZZScUCYMMQawap296PCpKFHb3NVS_eWutrmrKff8eTl9QjaxcRBUNA68gc4FyNhucP9yfAMrn5Ko</recordid><startdate>20221015</startdate><enddate>20221015</enddate><creator>Shamlooei, Majid</creator><creator>Zanon, Gabriele</creator><creator>Valli, Alberto</creator><creator>Bison, Paolo</creator><creator>Bursi, Oreste S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>20221015</creationdate><title>Investigation of thermal behaviour of structural steel S235N under laser cutting process: Experimental, analytical, and numerical studies</title><author>Shamlooei, Majid ; Zanon, Gabriele ; Valli, Alberto ; Bison, Paolo ; Bursi, Oreste S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-cb4128a7b3f8665358e221b33f4775dc216438fbf92f1e49d1e740c00ebf7b143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cutting parameters</topic><topic>Cutting speed</topic><topic>Cuttings</topic><topic>Diameters</topic><topic>FE modelling</topic><topic>Finite element method</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Laser beam cutting</topic><topic>Laser beam heating</topic><topic>Lasers</topic><topic>Machining</topic><topic>Mathematical models</topic><topic>Microconstituent location</topic><topic>Normal distribution</topic><topic>Oxygen-assisted laser cutting</topic><topic>S235N structural steel</topic><topic>Solid phases</topic><topic>Steel</topic><topic>Structural steels</topic><topic>Temperature distribution</topic><topic>Temperature effects</topic><topic>Temperature profiles</topic><topic>Thermal simulation</topic><topic>Thermodynamic properties</topic><topic>Thermographic monitoring</topic><topic>Thickness</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shamlooei, Majid</creatorcontrib><creatorcontrib>Zanon, Gabriele</creatorcontrib><creatorcontrib>Valli, Alberto</creatorcontrib><creatorcontrib>Bison, Paolo</creatorcontrib><creatorcontrib>Bursi, Oreste S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shamlooei, Majid</au><au>Zanon, Gabriele</au><au>Valli, Alberto</au><au>Bison, Paolo</au><au>Bursi, Oreste S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of thermal behaviour of structural steel S235N under laser cutting process: Experimental, analytical, and numerical studies</atitle><jtitle>Engineering structures</jtitle><date>2022-10-15</date><risdate>2022</risdate><volume>269</volume><spage>114754</spage><pages>114754-</pages><artnum>114754</artnum><issn>0141-0296</issn><eissn>1873-7323</eissn><abstract>Laser cutting represents an appealing solution for high machining speed and precision in steel constructions. To control the efficiency of laser cutting, the effects of laser heating must be understood; and to investigate thermal effects on a steel workpiece, a methodological approach for analytical modeling of laser cutting heat source is proposed herein. The proposed model takes into account laser source geometry variation along the cut edge thickness. Given the complexity of the analyzed process, there is no accurate mathematical formulation capable of modelling both heat flux and temperature distribution. Therefore, to model heat flux with an accurate temperature distribution field and both calibrate and validate solid phases of a cut specimen, the paper proposes a modified heat source based on a Gaussian distribution. The study focuses on mild structural steel S235N and relevant commonly used laser cutting parameters for structural applications. More precisely, the model allows the laser cutting process to be simulated as a function of laser beam diameter, cutting speed, laser power and element thickness. Thus, to simulate the thermal process by means of a proper heat source, a model was implemented in the FE software Abaqus. Model parameters were both calibrated and validated through experimental results provided by online monitoring of laser cutting process with a thermal camera and location of microconstituents. In particular, the temperature profiles obtained from the proposed FE model, exhibit a good agreement with experimental results. Finally, the distribution of microconstituents along the depth agrees with predicted temperature profiles.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2022.114754</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-0296 |
ispartof | Engineering structures, 2022-10, Vol.269, p.114754, Article 114754 |
issn | 0141-0296 1873-7323 |
language | eng |
recordid | cdi_proquest_journals_2726977146 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Cutting parameters Cutting speed Cuttings Diameters FE modelling Finite element method Heat Heat flux Heat transfer Laser beam cutting Laser beam heating Lasers Machining Mathematical models Microconstituent location Normal distribution Oxygen-assisted laser cutting S235N structural steel Solid phases Steel Structural steels Temperature distribution Temperature effects Temperature profiles Thermal simulation Thermodynamic properties Thermographic monitoring Thickness Workpieces |
title | Investigation of thermal behaviour of structural steel S235N under laser cutting process: Experimental, analytical, and numerical studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20thermal%20behaviour%20of%20structural%20steel%20S235N%20under%20laser%20cutting%20process:%20Experimental,%20analytical,%20and%20numerical%20studies&rft.jtitle=Engineering%20structures&rft.au=Shamlooei,%20Majid&rft.date=2022-10-15&rft.volume=269&rft.spage=114754&rft.pages=114754-&rft.artnum=114754&rft.issn=0141-0296&rft.eissn=1873-7323&rft_id=info:doi/10.1016/j.engstruct.2022.114754&rft_dat=%3Cproquest_cross%3E2726977146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726977146&rft_id=info:pmid/&rft_els_id=S0141029622008422&rfr_iscdi=true |