The Relative Importance of Thermal Gas, Radiation, and Magnetic Pressures around Star-forming Regions in Normal Galaxies and Dusty Starbursts

In this paper, an investigation on the relative importance of the thermal gas, radiation, and (minimum-energy) magnetic pressures around ≈200 star-forming regions in a sample of nearby normal and luminous infrared galaxies is presented. Given the range of galaxy distances, pressure estimates are mad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2022-10, Vol.938 (2), p.135
1. Verfasser: Murphy, Eric J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 135
container_title The Astrophysical journal
container_volume 938
creator Murphy, Eric J.
description In this paper, an investigation on the relative importance of the thermal gas, radiation, and (minimum-energy) magnetic pressures around ≈200 star-forming regions in a sample of nearby normal and luminous infrared galaxies is presented. Given the range of galaxy distances, pressure estimates are made on spatial scales spanning ∼0.1–3 kpc. The ratio of thermal gas-to-radiation pressures does not appear to significantly depend on star formation rate surface density (Σ SFR ), but exhibits a steady decrease with increasing physical size of the aperture over which the quantities are measured. The ratio of magnetic-to-radiation pressures appears to be relatively flat as a function of Σ SFR and similar in value for both nuclear and extranuclear regions, but, unlike the ratio of thermal gas-to-radiation pressures, exhibits a steady increase with increasing aperture size. Furthermore, it seems that the magnetic pressure is typically weaker than the radiation pressure on subkiloparsec scales, and only starts to play a significant role on few-kiloparsec scales. When the internal pressure terms are summed, their ratio to the (Σ SFR -inferred) kiloparsec-scale dynamical equilibrium pressure estimates is roughly constant. Consequently, it appears that the physical area of the galaxy disk, and not necessarily environment (e.g., nuclear versus extranuclear regions) or star formation activity, may play the dominant role in determining which pressure term is most active around star-forming regions. These results are consistent with a scenario in which a combination of processes acting primarily on different physical scales work collectively to regulate the star formation process in galaxy disks.
doi_str_mv 10.3847/1538-4357/ac8661
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726961525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726961525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-95cd0c2277b4db9cdddeaf16ec09efbd6953af944841ef33416136b72845b5483</originalsourceid><addsrcrecordid>eNp9kElLBDEQhYMoOC53jwHxNq1JZ-nOUdxhXNARvIV0lrGHmU6bdIv-CP-zaUf0Il6qqKrvvYIHwB5Gh6SkxRFmpMwoYcWR0iXneA2MflbrYIQQohknxdMm2IpxPoy5ECPwMX228N4uVFe_Wni1bH3oVKMt9A6mU1iqBbxQcQzvlakT5JsxVI2B12rW2K7W8C7YGPtUoAq-T5eHToXM-bCsm1lyniVJhHUDb_y32UK91QOe2NM-du9fiqoPsYs7YMOpRbS7330bPJ6fTU8us8ntxdXJ8STTpERdJpg2SOd5UVTUVEIbY6xymFuNhHWV4YIR5QSlJcXWEUIxx4RXRV5SVjFakm2wv_Jtg3_pbezk3PehSS9lXuRccMxylii0onTwMQbrZBvqpQrvEiM5hC6HhOWQsFyFniTjlaT27a_nP_jBH7hq51IkMpeYMNkaRz4B5S-RAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726961525</pqid></control><display><type>article</type><title>The Relative Importance of Thermal Gas, Radiation, and Magnetic Pressures around Star-forming Regions in Normal Galaxies and Dusty Starbursts</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Murphy, Eric J.</creator><creatorcontrib>Murphy, Eric J.</creatorcontrib><description>In this paper, an investigation on the relative importance of the thermal gas, radiation, and (minimum-energy) magnetic pressures around ≈200 star-forming regions in a sample of nearby normal and luminous infrared galaxies is presented. Given the range of galaxy distances, pressure estimates are made on spatial scales spanning ∼0.1–3 kpc. The ratio of thermal gas-to-radiation pressures does not appear to significantly depend on star formation rate surface density (Σ SFR ), but exhibits a steady decrease with increasing physical size of the aperture over which the quantities are measured. The ratio of magnetic-to-radiation pressures appears to be relatively flat as a function of Σ SFR and similar in value for both nuclear and extranuclear regions, but, unlike the ratio of thermal gas-to-radiation pressures, exhibits a steady increase with increasing aperture size. Furthermore, it seems that the magnetic pressure is typically weaker than the radiation pressure on subkiloparsec scales, and only starts to play a significant role on few-kiloparsec scales. When the internal pressure terms are summed, their ratio to the (Σ SFR -inferred) kiloparsec-scale dynamical equilibrium pressure estimates is roughly constant. Consequently, it appears that the physical area of the galaxy disk, and not necessarily environment (e.g., nuclear versus extranuclear regions) or star formation activity, may play the dominant role in determining which pressure term is most active around star-forming regions. These results are consistent with a scenario in which a combination of processes acting primarily on different physical scales work collectively to regulate the star formation process in galaxy disks.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac8661</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Apertures ; Astrophysics ; Disk galaxies ; Dust continuum emission ; Estimates ; Extragalactic magnetic fields ; Galaxies ; Galaxy evolution ; Infrared astronomy ; Internal pressure ; Luminous infrared galaxies ; Magnetic fields ; Radiation ; Radiation pressure ; Radio continuum emission ; Star &amp; galaxy formation ; Star formation ; Star formation rate ; Star forming regions ; Stars ; Stars &amp; galaxies ; Stellar feedback</subject><ispartof>The Astrophysical journal, 2022-10, Vol.938 (2), p.135</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-95cd0c2277b4db9cdddeaf16ec09efbd6953af944841ef33416136b72845b5483</citedby><cites>FETCH-LOGICAL-c380t-95cd0c2277b4db9cdddeaf16ec09efbd6953af944841ef33416136b72845b5483</cites><orcidid>0000-0001-7089-7325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac8661/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,27903,27904,38869,53846</link.rule.ids></links><search><creatorcontrib>Murphy, Eric J.</creatorcontrib><title>The Relative Importance of Thermal Gas, Radiation, and Magnetic Pressures around Star-forming Regions in Normal Galaxies and Dusty Starbursts</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>In this paper, an investigation on the relative importance of the thermal gas, radiation, and (minimum-energy) magnetic pressures around ≈200 star-forming regions in a sample of nearby normal and luminous infrared galaxies is presented. Given the range of galaxy distances, pressure estimates are made on spatial scales spanning ∼0.1–3 kpc. The ratio of thermal gas-to-radiation pressures does not appear to significantly depend on star formation rate surface density (Σ SFR ), but exhibits a steady decrease with increasing physical size of the aperture over which the quantities are measured. The ratio of magnetic-to-radiation pressures appears to be relatively flat as a function of Σ SFR and similar in value for both nuclear and extranuclear regions, but, unlike the ratio of thermal gas-to-radiation pressures, exhibits a steady increase with increasing aperture size. Furthermore, it seems that the magnetic pressure is typically weaker than the radiation pressure on subkiloparsec scales, and only starts to play a significant role on few-kiloparsec scales. When the internal pressure terms are summed, their ratio to the (Σ SFR -inferred) kiloparsec-scale dynamical equilibrium pressure estimates is roughly constant. Consequently, it appears that the physical area of the galaxy disk, and not necessarily environment (e.g., nuclear versus extranuclear regions) or star formation activity, may play the dominant role in determining which pressure term is most active around star-forming regions. These results are consistent with a scenario in which a combination of processes acting primarily on different physical scales work collectively to regulate the star formation process in galaxy disks.</description><subject>Apertures</subject><subject>Astrophysics</subject><subject>Disk galaxies</subject><subject>Dust continuum emission</subject><subject>Estimates</subject><subject>Extragalactic magnetic fields</subject><subject>Galaxies</subject><subject>Galaxy evolution</subject><subject>Infrared astronomy</subject><subject>Internal pressure</subject><subject>Luminous infrared galaxies</subject><subject>Magnetic fields</subject><subject>Radiation</subject><subject>Radiation pressure</subject><subject>Radio continuum emission</subject><subject>Star &amp; galaxy formation</subject><subject>Star formation</subject><subject>Star formation rate</subject><subject>Star forming regions</subject><subject>Stars</subject><subject>Stars &amp; galaxies</subject><subject>Stellar feedback</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kElLBDEQhYMoOC53jwHxNq1JZ-nOUdxhXNARvIV0lrGHmU6bdIv-CP-zaUf0Il6qqKrvvYIHwB5Gh6SkxRFmpMwoYcWR0iXneA2MflbrYIQQohknxdMm2IpxPoy5ECPwMX228N4uVFe_Wni1bH3oVKMt9A6mU1iqBbxQcQzvlakT5JsxVI2B12rW2K7W8C7YGPtUoAq-T5eHToXM-bCsm1lyniVJhHUDb_y32UK91QOe2NM-du9fiqoPsYs7YMOpRbS7330bPJ6fTU8us8ntxdXJ8STTpERdJpg2SOd5UVTUVEIbY6xymFuNhHWV4YIR5QSlJcXWEUIxx4RXRV5SVjFakm2wv_Jtg3_pbezk3PehSS9lXuRccMxylii0onTwMQbrZBvqpQrvEiM5hC6HhOWQsFyFniTjlaT27a_nP_jBH7hq51IkMpeYMNkaRz4B5S-RAQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Murphy, Eric J.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7089-7325</orcidid></search><sort><creationdate>20221001</creationdate><title>The Relative Importance of Thermal Gas, Radiation, and Magnetic Pressures around Star-forming Regions in Normal Galaxies and Dusty Starbursts</title><author>Murphy, Eric J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-95cd0c2277b4db9cdddeaf16ec09efbd6953af944841ef33416136b72845b5483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apertures</topic><topic>Astrophysics</topic><topic>Disk galaxies</topic><topic>Dust continuum emission</topic><topic>Estimates</topic><topic>Extragalactic magnetic fields</topic><topic>Galaxies</topic><topic>Galaxy evolution</topic><topic>Infrared astronomy</topic><topic>Internal pressure</topic><topic>Luminous infrared galaxies</topic><topic>Magnetic fields</topic><topic>Radiation</topic><topic>Radiation pressure</topic><topic>Radio continuum emission</topic><topic>Star &amp; galaxy formation</topic><topic>Star formation</topic><topic>Star formation rate</topic><topic>Star forming regions</topic><topic>Stars</topic><topic>Stars &amp; galaxies</topic><topic>Stellar feedback</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murphy, Eric J.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murphy, Eric J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Relative Importance of Thermal Gas, Radiation, and Magnetic Pressures around Star-forming Regions in Normal Galaxies and Dusty Starbursts</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>938</volume><issue>2</issue><spage>135</spage><pages>135-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>In this paper, an investigation on the relative importance of the thermal gas, radiation, and (minimum-energy) magnetic pressures around ≈200 star-forming regions in a sample of nearby normal and luminous infrared galaxies is presented. Given the range of galaxy distances, pressure estimates are made on spatial scales spanning ∼0.1–3 kpc. The ratio of thermal gas-to-radiation pressures does not appear to significantly depend on star formation rate surface density (Σ SFR ), but exhibits a steady decrease with increasing physical size of the aperture over which the quantities are measured. The ratio of magnetic-to-radiation pressures appears to be relatively flat as a function of Σ SFR and similar in value for both nuclear and extranuclear regions, but, unlike the ratio of thermal gas-to-radiation pressures, exhibits a steady increase with increasing aperture size. Furthermore, it seems that the magnetic pressure is typically weaker than the radiation pressure on subkiloparsec scales, and only starts to play a significant role on few-kiloparsec scales. When the internal pressure terms are summed, their ratio to the (Σ SFR -inferred) kiloparsec-scale dynamical equilibrium pressure estimates is roughly constant. Consequently, it appears that the physical area of the galaxy disk, and not necessarily environment (e.g., nuclear versus extranuclear regions) or star formation activity, may play the dominant role in determining which pressure term is most active around star-forming regions. These results are consistent with a scenario in which a combination of processes acting primarily on different physical scales work collectively to regulate the star formation process in galaxy disks.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac8661</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7089-7325</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2022-10, Vol.938 (2), p.135
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2726961525
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Apertures
Astrophysics
Disk galaxies
Dust continuum emission
Estimates
Extragalactic magnetic fields
Galaxies
Galaxy evolution
Infrared astronomy
Internal pressure
Luminous infrared galaxies
Magnetic fields
Radiation
Radiation pressure
Radio continuum emission
Star & galaxy formation
Star formation
Star formation rate
Star forming regions
Stars
Stars & galaxies
Stellar feedback
title The Relative Importance of Thermal Gas, Radiation, and Magnetic Pressures around Star-forming Regions in Normal Galaxies and Dusty Starbursts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Relative%20Importance%20of%20Thermal%20Gas,%20Radiation,%20and%20Magnetic%20Pressures%20around%20Star-forming%20Regions%20in%20Normal%20Galaxies%20and%20Dusty%20Starbursts&rft.jtitle=The%20Astrophysical%20journal&rft.au=Murphy,%20Eric%20J.&rft.date=2022-10-01&rft.volume=938&rft.issue=2&rft.spage=135&rft.pages=135-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac8661&rft_dat=%3Cproquest_cross%3E2726961525%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726961525&rft_id=info:pmid/&rfr_iscdi=true