A Variational Principle of Lagrange of the Micropolar Theory of Elasticity in the Case of Transversely Isotropic Medium
In this paper, a variational principle of Lagrange in the micropolar theory of elasticity for transversely isotropic and centrally symmetric material is formulated. The Ritz method and piecewise-polynomial serendipity shape functions are used to obtain the components of the tensor-block stiffness ma...
Gespeichert in:
Veröffentlicht in: | Moscow University mechanics bulletin 2022-08, Vol.77 (4), p.93-98 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 98 |
---|---|
container_issue | 4 |
container_start_page | 93 |
container_title | Moscow University mechanics bulletin |
container_volume | 77 |
creator | Romanov, A. V. |
description | In this paper, a variational principle of Lagrange in the micropolar theory of elasticity for transversely isotropic and centrally symmetric material is formulated. The Ritz method and piecewise-polynomial serendipity shape functions are used to obtain the components of the tensor-block stiffness matrix and a system of linear equations. |
doi_str_mv | 10.3103/S0027133022040045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726953609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726953609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-500916173b697e93c2ac379c92fb2cd2140f335cb62b3ed2c6ead74f812f1e0b3</originalsourceid><addsrcrecordid>eNp1kN1LwzAUxYMoOKd_gG8Bn6s3N_1YHsfwY7Ch4PS1pGm6ZXRNTTql_73pJvggPt0L5_wOnEPINYNbzoDfvQJgxjgHRIgB4uSEjJjgcTSJEzwlo0GOBv2cXHi_BUgSEeOIfE3pu3RGdsY2sqYvzjTKtLWmtqILuXayWR_-bqPp0ihnW1tLR1cbbV0_CPe19J1RpuupaQ62mfQHZBVg_6md13VP5952ATaKLnVp9rtLclbJ2uurnzsmbw_3q9lTtHh-nM-mi0hxlnZRAiBYyjJepCLTgiuUimdCCawKVCWyGCrOE1WkWHBdokq1LLO4mjCsmIaCj8nNMbd19mOvfZdv7d6Fqj7HDFOR8BREcLGjKxT03ukqb53ZSdfnDPJh3_zPvoHBI-ODN6zkfpP_h74B7Z98gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726953609</pqid></control><display><type>article</type><title>A Variational Principle of Lagrange of the Micropolar Theory of Elasticity in the Case of Transversely Isotropic Medium</title><source>SpringerLink Journals</source><creator>Romanov, A. V.</creator><creatorcontrib>Romanov, A. V.</creatorcontrib><description>In this paper, a variational principle of Lagrange in the micropolar theory of elasticity for transversely isotropic and centrally symmetric material is formulated. The Ritz method and piecewise-polynomial serendipity shape functions are used to obtain the components of the tensor-block stiffness matrix and a system of linear equations.</description><identifier>ISSN: 0027-1330</identifier><identifier>EISSN: 1934-8452</identifier><identifier>DOI: 10.3103/S0027133022040045</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical Mechanics ; Elasticity ; Isotropic material ; Isotropic media ; Linear equations ; Mathematical analysis ; Physics ; Physics and Astronomy ; Polynomials ; Principles ; Ritz method ; Shape functions ; Stiffness matrix ; Tensors</subject><ispartof>Moscow University mechanics bulletin, 2022-08, Vol.77 (4), p.93-98</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-500916173b697e93c2ac379c92fb2cd2140f335cb62b3ed2c6ead74f812f1e0b3</citedby><cites>FETCH-LOGICAL-c316t-500916173b697e93c2ac379c92fb2cd2140f335cb62b3ed2c6ead74f812f1e0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0027133022040045$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0027133022040045$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Romanov, A. V.</creatorcontrib><title>A Variational Principle of Lagrange of the Micropolar Theory of Elasticity in the Case of Transversely Isotropic Medium</title><title>Moscow University mechanics bulletin</title><addtitle>Moscow Univ. Mech. Bull</addtitle><description>In this paper, a variational principle of Lagrange in the micropolar theory of elasticity for transversely isotropic and centrally symmetric material is formulated. The Ritz method and piecewise-polynomial serendipity shape functions are used to obtain the components of the tensor-block stiffness matrix and a system of linear equations.</description><subject>Classical Mechanics</subject><subject>Elasticity</subject><subject>Isotropic material</subject><subject>Isotropic media</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polynomials</subject><subject>Principles</subject><subject>Ritz method</subject><subject>Shape functions</subject><subject>Stiffness matrix</subject><subject>Tensors</subject><issn>0027-1330</issn><issn>1934-8452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kN1LwzAUxYMoOKd_gG8Bn6s3N_1YHsfwY7Ch4PS1pGm6ZXRNTTql_73pJvggPt0L5_wOnEPINYNbzoDfvQJgxjgHRIgB4uSEjJjgcTSJEzwlo0GOBv2cXHi_BUgSEeOIfE3pu3RGdsY2sqYvzjTKtLWmtqILuXayWR_-bqPp0ihnW1tLR1cbbV0_CPe19J1RpuupaQ62mfQHZBVg_6md13VP5952ATaKLnVp9rtLclbJ2uurnzsmbw_3q9lTtHh-nM-mi0hxlnZRAiBYyjJepCLTgiuUimdCCawKVCWyGCrOE1WkWHBdokq1LLO4mjCsmIaCj8nNMbd19mOvfZdv7d6Fqj7HDFOR8BREcLGjKxT03ukqb53ZSdfnDPJh3_zPvoHBI-ODN6zkfpP_h74B7Z98gw</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Romanov, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220801</creationdate><title>A Variational Principle of Lagrange of the Micropolar Theory of Elasticity in the Case of Transversely Isotropic Medium</title><author>Romanov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-500916173b697e93c2ac379c92fb2cd2140f335cb62b3ed2c6ead74f812f1e0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classical Mechanics</topic><topic>Elasticity</topic><topic>Isotropic material</topic><topic>Isotropic media</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polynomials</topic><topic>Principles</topic><topic>Ritz method</topic><topic>Shape functions</topic><topic>Stiffness matrix</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romanov, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Moscow University mechanics bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romanov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Variational Principle of Lagrange of the Micropolar Theory of Elasticity in the Case of Transversely Isotropic Medium</atitle><jtitle>Moscow University mechanics bulletin</jtitle><stitle>Moscow Univ. Mech. Bull</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>77</volume><issue>4</issue><spage>93</spage><epage>98</epage><pages>93-98</pages><issn>0027-1330</issn><eissn>1934-8452</eissn><abstract>In this paper, a variational principle of Lagrange in the micropolar theory of elasticity for transversely isotropic and centrally symmetric material is formulated. The Ritz method and piecewise-polynomial serendipity shape functions are used to obtain the components of the tensor-block stiffness matrix and a system of linear equations.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0027133022040045</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-1330 |
ispartof | Moscow University mechanics bulletin, 2022-08, Vol.77 (4), p.93-98 |
issn | 0027-1330 1934-8452 |
language | eng |
recordid | cdi_proquest_journals_2726953609 |
source | SpringerLink Journals |
subjects | Classical Mechanics Elasticity Isotropic material Isotropic media Linear equations Mathematical analysis Physics Physics and Astronomy Polynomials Principles Ritz method Shape functions Stiffness matrix Tensors |
title | A Variational Principle of Lagrange of the Micropolar Theory of Elasticity in the Case of Transversely Isotropic Medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A15%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Variational%20Principle%20of%20Lagrange%20of%20the%20Micropolar%20Theory%20of%20Elasticity%20in%20the%20Case%20of%20Transversely%20Isotropic%20Medium&rft.jtitle=Moscow%20University%20mechanics%20bulletin&rft.au=Romanov,%20A.%20V.&rft.date=2022-08-01&rft.volume=77&rft.issue=4&rft.spage=93&rft.epage=98&rft.pages=93-98&rft.issn=0027-1330&rft.eissn=1934-8452&rft_id=info:doi/10.3103/S0027133022040045&rft_dat=%3Cproquest_cross%3E2726953609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726953609&rft_id=info:pmid/&rfr_iscdi=true |