MuGER\(^2\): Multi-Granularity Evidence Retrieval and Reasoning for Hybrid Question Answering

Hybrid question answering (HQA) aims to answer questions over heterogeneous data, including tables and passages linked to table cells. The heterogeneous data can provide different granularity evidence to HQA models, e.t., column, row, cell, and link. Conventional HQA models usually retrieve coarse-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-10
Hauptverfasser: Wang, Yingyao, Bao, Junwei, Duan, Chaoqun, Wu, Youzheng, He, Xiaodong, Zhao, Tiejun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wang, Yingyao
Bao, Junwei
Duan, Chaoqun
Wu, Youzheng
He, Xiaodong
Zhao, Tiejun
description Hybrid question answering (HQA) aims to answer questions over heterogeneous data, including tables and passages linked to table cells. The heterogeneous data can provide different granularity evidence to HQA models, e.t., column, row, cell, and link. Conventional HQA models usually retrieve coarse- or fine-grained evidence to reason the answer. Through comparison, we find that coarse-grained evidence is easier to retrieve but contributes less to the reasoner, while fine-grained evidence is the opposite. To preserve the advantage and eliminate the disadvantage of different granularity evidence, we propose MuGER\(^2\), a Multi-Granularity Evidence Retrieval and Reasoning approach. In evidence retrieval, a unified retriever is designed to learn the multi-granularity evidence from the heterogeneous data. In answer reasoning, an evidence selector is proposed to navigate the fine-grained evidence for the answer reader based on the learned multi-granularity evidence. Experiment results on the HybridQA dataset show that MuGER\(^2\) significantly boosts the HQA performance. Further ablation analysis verifies the effectiveness of both the retrieval and reasoning designs.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2726656009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726656009</sourcerecordid><originalsourceid>FETCH-proquest_journals_27266560093</originalsourceid><addsrcrecordid>eNqNisEKgjAAQEcQJOU_DLrUQVhbzuoWYXrxkHS0ZOWMydhqc4Z_n0Ef0OnxeG8EPEzIKtisMZ4A39oGIYRphMOQeOCSuSTOi8UVF8sdzJxsRZAYppxkRrQ9jDtRcXXnMOetEbxjEjJVDcasVkI9YK0NTPubERU8OW5boRXcK_vmZqgzMK6ZtNz_cQrmx_h8SIOn0a_vXTbaGTWkEkeY0pAitCX_XR9iTkLu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726656009</pqid></control><display><type>article</type><title>MuGER\(^2\): Multi-Granularity Evidence Retrieval and Reasoning for Hybrid Question Answering</title><source>Freely Accessible Journals</source><creator>Wang, Yingyao ; Bao, Junwei ; Duan, Chaoqun ; Wu, Youzheng ; He, Xiaodong ; Zhao, Tiejun</creator><creatorcontrib>Wang, Yingyao ; Bao, Junwei ; Duan, Chaoqun ; Wu, Youzheng ; He, Xiaodong ; Zhao, Tiejun</creatorcontrib><description>Hybrid question answering (HQA) aims to answer questions over heterogeneous data, including tables and passages linked to table cells. The heterogeneous data can provide different granularity evidence to HQA models, e.t., column, row, cell, and link. Conventional HQA models usually retrieve coarse- or fine-grained evidence to reason the answer. Through comparison, we find that coarse-grained evidence is easier to retrieve but contributes less to the reasoner, while fine-grained evidence is the opposite. To preserve the advantage and eliminate the disadvantage of different granularity evidence, we propose MuGER\(^2\), a Multi-Granularity Evidence Retrieval and Reasoning approach. In evidence retrieval, a unified retriever is designed to learn the multi-granularity evidence from the heterogeneous data. In answer reasoning, an evidence selector is proposed to navigate the fine-grained evidence for the answer reader based on the learned multi-granularity evidence. Experiment results on the HybridQA dataset show that MuGER\(^2\) significantly boosts the HQA performance. Further ablation analysis verifies the effectiveness of both the retrieval and reasoning designs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ablation ; Questions ; Reasoning ; Retrieval</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Wang, Yingyao</creatorcontrib><creatorcontrib>Bao, Junwei</creatorcontrib><creatorcontrib>Duan, Chaoqun</creatorcontrib><creatorcontrib>Wu, Youzheng</creatorcontrib><creatorcontrib>He, Xiaodong</creatorcontrib><creatorcontrib>Zhao, Tiejun</creatorcontrib><title>MuGER\(^2\): Multi-Granularity Evidence Retrieval and Reasoning for Hybrid Question Answering</title><title>arXiv.org</title><description>Hybrid question answering (HQA) aims to answer questions over heterogeneous data, including tables and passages linked to table cells. The heterogeneous data can provide different granularity evidence to HQA models, e.t., column, row, cell, and link. Conventional HQA models usually retrieve coarse- or fine-grained evidence to reason the answer. Through comparison, we find that coarse-grained evidence is easier to retrieve but contributes less to the reasoner, while fine-grained evidence is the opposite. To preserve the advantage and eliminate the disadvantage of different granularity evidence, we propose MuGER\(^2\), a Multi-Granularity Evidence Retrieval and Reasoning approach. In evidence retrieval, a unified retriever is designed to learn the multi-granularity evidence from the heterogeneous data. In answer reasoning, an evidence selector is proposed to navigate the fine-grained evidence for the answer reader based on the learned multi-granularity evidence. Experiment results on the HybridQA dataset show that MuGER\(^2\) significantly boosts the HQA performance. Further ablation analysis verifies the effectiveness of both the retrieval and reasoning designs.</description><subject>Ablation</subject><subject>Questions</subject><subject>Reasoning</subject><subject>Retrieval</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNisEKgjAAQEcQJOU_DLrUQVhbzuoWYXrxkHS0ZOWMydhqc4Z_n0Ef0OnxeG8EPEzIKtisMZ4A39oGIYRphMOQeOCSuSTOi8UVF8sdzJxsRZAYppxkRrQ9jDtRcXXnMOetEbxjEjJVDcasVkI9YK0NTPubERU8OW5boRXcK_vmZqgzMK6ZtNz_cQrmx_h8SIOn0a_vXTbaGTWkEkeY0pAitCX_XR9iTkLu</recordid><startdate>20221019</startdate><enddate>20221019</enddate><creator>Wang, Yingyao</creator><creator>Bao, Junwei</creator><creator>Duan, Chaoqun</creator><creator>Wu, Youzheng</creator><creator>He, Xiaodong</creator><creator>Zhao, Tiejun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221019</creationdate><title>MuGER\(^2\): Multi-Granularity Evidence Retrieval and Reasoning for Hybrid Question Answering</title><author>Wang, Yingyao ; Bao, Junwei ; Duan, Chaoqun ; Wu, Youzheng ; He, Xiaodong ; Zhao, Tiejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27266560093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Questions</topic><topic>Reasoning</topic><topic>Retrieval</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yingyao</creatorcontrib><creatorcontrib>Bao, Junwei</creatorcontrib><creatorcontrib>Duan, Chaoqun</creatorcontrib><creatorcontrib>Wu, Youzheng</creatorcontrib><creatorcontrib>He, Xiaodong</creatorcontrib><creatorcontrib>Zhao, Tiejun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yingyao</au><au>Bao, Junwei</au><au>Duan, Chaoqun</au><au>Wu, Youzheng</au><au>He, Xiaodong</au><au>Zhao, Tiejun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>MuGER\(^2\): Multi-Granularity Evidence Retrieval and Reasoning for Hybrid Question Answering</atitle><jtitle>arXiv.org</jtitle><date>2022-10-19</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Hybrid question answering (HQA) aims to answer questions over heterogeneous data, including tables and passages linked to table cells. The heterogeneous data can provide different granularity evidence to HQA models, e.t., column, row, cell, and link. Conventional HQA models usually retrieve coarse- or fine-grained evidence to reason the answer. Through comparison, we find that coarse-grained evidence is easier to retrieve but contributes less to the reasoner, while fine-grained evidence is the opposite. To preserve the advantage and eliminate the disadvantage of different granularity evidence, we propose MuGER\(^2\), a Multi-Granularity Evidence Retrieval and Reasoning approach. In evidence retrieval, a unified retriever is designed to learn the multi-granularity evidence from the heterogeneous data. In answer reasoning, an evidence selector is proposed to navigate the fine-grained evidence for the answer reader based on the learned multi-granularity evidence. Experiment results on the HybridQA dataset show that MuGER\(^2\) significantly boosts the HQA performance. Further ablation analysis verifies the effectiveness of both the retrieval and reasoning designs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2726656009
source Freely Accessible Journals
subjects Ablation
Questions
Reasoning
Retrieval
title MuGER\(^2\): Multi-Granularity Evidence Retrieval and Reasoning for Hybrid Question Answering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A04%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=MuGER%5C(%5E2%5C):%20Multi-Granularity%20Evidence%20Retrieval%20and%20Reasoning%20for%20Hybrid%20Question%20Answering&rft.jtitle=arXiv.org&rft.au=Wang,%20Yingyao&rft.date=2022-10-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2726656009%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726656009&rft_id=info:pmid/&rfr_iscdi=true