Automatic personality prediction: an enhanced method using ensemble modeling
Human personality is significantly represented by those words which he/she uses in his/her speech or writing. As a consequence of spreading the information infrastructures (specifically the Internet and social media), human communications have reformed notably from face to face communication. Genera...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2022-11, Vol.34 (21), p.18369-18389 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18389 |
---|---|
container_issue | 21 |
container_start_page | 18369 |
container_title | Neural computing & applications |
container_volume | 34 |
creator | Ramezani, Majid Feizi-Derakhshi, Mohammad-Reza Balafar, Mohammad-Ali Asgari-Chenaghlu, Meysam Feizi-Derakhshi, Ali-Reza Nikzad-Khasmakhi, Narjes Ranjbar-Khadivi, Mehrdad Jahanbakhsh-Nagadeh, Zoleikha Zafarani-Moattar, Elnaz Akan, Taymaz |
description | Human personality is significantly represented by those words which he/she uses in his/her speech or writing. As a consequence of spreading the information infrastructures (specifically the Internet and social media), human communications have reformed notably from face to face communication. Generally, Automatic Personality Prediction (or Perception) (APP) is the automated forecasting of the personality on different types of human generated/exchanged contents (like text, speech, image, video, etc.). The major objective of this study is to enhance the accuracy of APP from the text. To this end, we suggest five new APP methods including term frequency vector-based, ontology-based, enriched ontology-based, latent semantic analysis (LSA)-based, and deep learning-based (BiLSTM) methods. These methods as the base ones, contribute to each other to enhance the APP accuracy through ensemble modeling (stacking) based on a hierarchical attention network (HAN) as the meta-model. The results show that ensemble modeling enhances the accuracy of APP. |
doi_str_mv | 10.1007/s00521-022-07444-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726619214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726619214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f82c35431eaea25071fd3216a56c2e358d537180d1f7f9aef1024427aadff4693</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouFb_AU8Fz9XJZ1tvy-IXLHjRc4jNZLdL29SkPex_b7SCN08Db957zPwIuaZwSwHKuwggGS2AsQJKIUShTsiKCs4LDrI6JSuoRVorwc_JRYwHABCqkiuyXc-T783UNvmIIfrBdO10zMeAtm2m1g_3uRlyHPZmaNDmPU57b_M5tsMuqRH7jw7z3lvsknJJzpzpIl79zoy8Pz68bZ6L7evTy2a9LRpO66lwFWu4FJyiQcMklNRZzqgyUjUMuays5CWtwFJXutqgo8CEYKUx1jmhap6Rm6V3DP5zxjjpg59DOj1qVjKlaM3S7xlhi6sJPsaATo-h7U04agr6m5peqOlETf9Q0yqF-BKKyTzsMPxV_5P6AlkAb6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726619214</pqid></control><display><type>article</type><title>Automatic personality prediction: an enhanced method using ensemble modeling</title><source>SpringerLink Journals</source><creator>Ramezani, Majid ; Feizi-Derakhshi, Mohammad-Reza ; Balafar, Mohammad-Ali ; Asgari-Chenaghlu, Meysam ; Feizi-Derakhshi, Ali-Reza ; Nikzad-Khasmakhi, Narjes ; Ranjbar-Khadivi, Mehrdad ; Jahanbakhsh-Nagadeh, Zoleikha ; Zafarani-Moattar, Elnaz ; Akan, Taymaz</creator><creatorcontrib>Ramezani, Majid ; Feizi-Derakhshi, Mohammad-Reza ; Balafar, Mohammad-Ali ; Asgari-Chenaghlu, Meysam ; Feizi-Derakhshi, Ali-Reza ; Nikzad-Khasmakhi, Narjes ; Ranjbar-Khadivi, Mehrdad ; Jahanbakhsh-Nagadeh, Zoleikha ; Zafarani-Moattar, Elnaz ; Akan, Taymaz</creatorcontrib><description>Human personality is significantly represented by those words which he/she uses in his/her speech or writing. As a consequence of spreading the information infrastructures (specifically the Internet and social media), human communications have reformed notably from face to face communication. Generally, Automatic Personality Prediction (or Perception) (APP) is the automated forecasting of the personality on different types of human generated/exchanged contents (like text, speech, image, video, etc.). The major objective of this study is to enhance the accuracy of APP from the text. To this end, we suggest five new APP methods including term frequency vector-based, ontology-based, enriched ontology-based, latent semantic analysis (LSA)-based, and deep learning-based (BiLSTM) methods. These methods as the base ones, contribute to each other to enhance the APP accuracy through ensemble modeling (stacking) based on a hierarchical attention network (HAN) as the meta-model. The results show that ensemble modeling enhances the accuracy of APP.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-07444-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Deep learning ; Human communication ; Hypotheses ; Image enhancement ; Image Processing and Computer Vision ; Literature reviews ; Methods ; Model accuracy ; Modelling ; Ontology ; Original Article ; Personality ; Personality traits ; Probability and Statistics in Computer Science ; Semantic analysis ; Semantics ; Social networks ; Speech ; Verbal communication</subject><ispartof>Neural computing & applications, 2022-11, Vol.34 (21), p.18369-18389</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f82c35431eaea25071fd3216a56c2e358d537180d1f7f9aef1024427aadff4693</citedby><cites>FETCH-LOGICAL-c319t-f82c35431eaea25071fd3216a56c2e358d537180d1f7f9aef1024427aadff4693</cites><orcidid>0000-0001-5898-0871 ; 0000-0002-8548-976X ; 0000-0003-0886-7023 ; 0000-0002-7892-9675 ; 0000-0003-4070-1058 ; 0000-0003-3036-1651 ; 0000-0002-3441-8224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-022-07444-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-022-07444-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ramezani, Majid</creatorcontrib><creatorcontrib>Feizi-Derakhshi, Mohammad-Reza</creatorcontrib><creatorcontrib>Balafar, Mohammad-Ali</creatorcontrib><creatorcontrib>Asgari-Chenaghlu, Meysam</creatorcontrib><creatorcontrib>Feizi-Derakhshi, Ali-Reza</creatorcontrib><creatorcontrib>Nikzad-Khasmakhi, Narjes</creatorcontrib><creatorcontrib>Ranjbar-Khadivi, Mehrdad</creatorcontrib><creatorcontrib>Jahanbakhsh-Nagadeh, Zoleikha</creatorcontrib><creatorcontrib>Zafarani-Moattar, Elnaz</creatorcontrib><creatorcontrib>Akan, Taymaz</creatorcontrib><title>Automatic personality prediction: an enhanced method using ensemble modeling</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>Human personality is significantly represented by those words which he/she uses in his/her speech or writing. As a consequence of spreading the information infrastructures (specifically the Internet and social media), human communications have reformed notably from face to face communication. Generally, Automatic Personality Prediction (or Perception) (APP) is the automated forecasting of the personality on different types of human generated/exchanged contents (like text, speech, image, video, etc.). The major objective of this study is to enhance the accuracy of APP from the text. To this end, we suggest five new APP methods including term frequency vector-based, ontology-based, enriched ontology-based, latent semantic analysis (LSA)-based, and deep learning-based (BiLSTM) methods. These methods as the base ones, contribute to each other to enhance the APP accuracy through ensemble modeling (stacking) based on a hierarchical attention network (HAN) as the meta-model. The results show that ensemble modeling enhances the accuracy of APP.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Deep learning</subject><subject>Human communication</subject><subject>Hypotheses</subject><subject>Image enhancement</subject><subject>Image Processing and Computer Vision</subject><subject>Literature reviews</subject><subject>Methods</subject><subject>Model accuracy</subject><subject>Modelling</subject><subject>Ontology</subject><subject>Original Article</subject><subject>Personality</subject><subject>Personality traits</subject><subject>Probability and Statistics in Computer Science</subject><subject>Semantic analysis</subject><subject>Semantics</subject><subject>Social networks</subject><subject>Speech</subject><subject>Verbal communication</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1LxDAQxYMouFb_AU8Fz9XJZ1tvy-IXLHjRc4jNZLdL29SkPex_b7SCN08Db957zPwIuaZwSwHKuwggGS2AsQJKIUShTsiKCs4LDrI6JSuoRVorwc_JRYwHABCqkiuyXc-T783UNvmIIfrBdO10zMeAtm2m1g_3uRlyHPZmaNDmPU57b_M5tsMuqRH7jw7z3lvsknJJzpzpIl79zoy8Pz68bZ6L7evTy2a9LRpO66lwFWu4FJyiQcMklNRZzqgyUjUMuays5CWtwFJXutqgo8CEYKUx1jmhap6Rm6V3DP5zxjjpg59DOj1qVjKlaM3S7xlhi6sJPsaATo-h7U04agr6m5peqOlETf9Q0yqF-BKKyTzsMPxV_5P6AlkAb6U</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Ramezani, Majid</creator><creator>Feizi-Derakhshi, Mohammad-Reza</creator><creator>Balafar, Mohammad-Ali</creator><creator>Asgari-Chenaghlu, Meysam</creator><creator>Feizi-Derakhshi, Ali-Reza</creator><creator>Nikzad-Khasmakhi, Narjes</creator><creator>Ranjbar-Khadivi, Mehrdad</creator><creator>Jahanbakhsh-Nagadeh, Zoleikha</creator><creator>Zafarani-Moattar, Elnaz</creator><creator>Akan, Taymaz</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5898-0871</orcidid><orcidid>https://orcid.org/0000-0002-8548-976X</orcidid><orcidid>https://orcid.org/0000-0003-0886-7023</orcidid><orcidid>https://orcid.org/0000-0002-7892-9675</orcidid><orcidid>https://orcid.org/0000-0003-4070-1058</orcidid><orcidid>https://orcid.org/0000-0003-3036-1651</orcidid><orcidid>https://orcid.org/0000-0002-3441-8224</orcidid></search><sort><creationdate>20221101</creationdate><title>Automatic personality prediction: an enhanced method using ensemble modeling</title><author>Ramezani, Majid ; Feizi-Derakhshi, Mohammad-Reza ; Balafar, Mohammad-Ali ; Asgari-Chenaghlu, Meysam ; Feizi-Derakhshi, Ali-Reza ; Nikzad-Khasmakhi, Narjes ; Ranjbar-Khadivi, Mehrdad ; Jahanbakhsh-Nagadeh, Zoleikha ; Zafarani-Moattar, Elnaz ; Akan, Taymaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f82c35431eaea25071fd3216a56c2e358d537180d1f7f9aef1024427aadff4693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Deep learning</topic><topic>Human communication</topic><topic>Hypotheses</topic><topic>Image enhancement</topic><topic>Image Processing and Computer Vision</topic><topic>Literature reviews</topic><topic>Methods</topic><topic>Model accuracy</topic><topic>Modelling</topic><topic>Ontology</topic><topic>Original Article</topic><topic>Personality</topic><topic>Personality traits</topic><topic>Probability and Statistics in Computer Science</topic><topic>Semantic analysis</topic><topic>Semantics</topic><topic>Social networks</topic><topic>Speech</topic><topic>Verbal communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramezani, Majid</creatorcontrib><creatorcontrib>Feizi-Derakhshi, Mohammad-Reza</creatorcontrib><creatorcontrib>Balafar, Mohammad-Ali</creatorcontrib><creatorcontrib>Asgari-Chenaghlu, Meysam</creatorcontrib><creatorcontrib>Feizi-Derakhshi, Ali-Reza</creatorcontrib><creatorcontrib>Nikzad-Khasmakhi, Narjes</creatorcontrib><creatorcontrib>Ranjbar-Khadivi, Mehrdad</creatorcontrib><creatorcontrib>Jahanbakhsh-Nagadeh, Zoleikha</creatorcontrib><creatorcontrib>Zafarani-Moattar, Elnaz</creatorcontrib><creatorcontrib>Akan, Taymaz</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramezani, Majid</au><au>Feizi-Derakhshi, Mohammad-Reza</au><au>Balafar, Mohammad-Ali</au><au>Asgari-Chenaghlu, Meysam</au><au>Feizi-Derakhshi, Ali-Reza</au><au>Nikzad-Khasmakhi, Narjes</au><au>Ranjbar-Khadivi, Mehrdad</au><au>Jahanbakhsh-Nagadeh, Zoleikha</au><au>Zafarani-Moattar, Elnaz</au><au>Akan, Taymaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic personality prediction: an enhanced method using ensemble modeling</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>34</volume><issue>21</issue><spage>18369</spage><epage>18389</epage><pages>18369-18389</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Human personality is significantly represented by those words which he/she uses in his/her speech or writing. As a consequence of spreading the information infrastructures (specifically the Internet and social media), human communications have reformed notably from face to face communication. Generally, Automatic Personality Prediction (or Perception) (APP) is the automated forecasting of the personality on different types of human generated/exchanged contents (like text, speech, image, video, etc.). The major objective of this study is to enhance the accuracy of APP from the text. To this end, we suggest five new APP methods including term frequency vector-based, ontology-based, enriched ontology-based, latent semantic analysis (LSA)-based, and deep learning-based (BiLSTM) methods. These methods as the base ones, contribute to each other to enhance the APP accuracy through ensemble modeling (stacking) based on a hierarchical attention network (HAN) as the meta-model. The results show that ensemble modeling enhances the accuracy of APP.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-07444-6</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-5898-0871</orcidid><orcidid>https://orcid.org/0000-0002-8548-976X</orcidid><orcidid>https://orcid.org/0000-0003-0886-7023</orcidid><orcidid>https://orcid.org/0000-0002-7892-9675</orcidid><orcidid>https://orcid.org/0000-0003-4070-1058</orcidid><orcidid>https://orcid.org/0000-0003-3036-1651</orcidid><orcidid>https://orcid.org/0000-0002-3441-8224</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2022-11, Vol.34 (21), p.18369-18389 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2726619214 |
source | SpringerLink Journals |
subjects | Accuracy Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer engineering Computer Science Data Mining and Knowledge Discovery Deep learning Human communication Hypotheses Image enhancement Image Processing and Computer Vision Literature reviews Methods Model accuracy Modelling Ontology Original Article Personality Personality traits Probability and Statistics in Computer Science Semantic analysis Semantics Social networks Speech Verbal communication |
title | Automatic personality prediction: an enhanced method using ensemble modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T08%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20personality%20prediction:%20an%20enhanced%20method%20using%20ensemble%20modeling&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Ramezani,%20Majid&rft.date=2022-11-01&rft.volume=34&rft.issue=21&rft.spage=18369&rft.epage=18389&rft.pages=18369-18389&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-07444-6&rft_dat=%3Cproquest_cross%3E2726619214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726619214&rft_id=info:pmid/&rfr_iscdi=true |