Automatic personality prediction: an enhanced method using ensemble modeling

Human personality is significantly represented by those words which he/she uses in his/her speech or writing. As a consequence of spreading the information infrastructures (specifically the Internet and social media), human communications have reformed notably from face to face communication. Genera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2022-11, Vol.34 (21), p.18369-18389
Hauptverfasser: Ramezani, Majid, Feizi-Derakhshi, Mohammad-Reza, Balafar, Mohammad-Ali, Asgari-Chenaghlu, Meysam, Feizi-Derakhshi, Ali-Reza, Nikzad-Khasmakhi, Narjes, Ranjbar-Khadivi, Mehrdad, Jahanbakhsh-Nagadeh, Zoleikha, Zafarani-Moattar, Elnaz, Akan, Taymaz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18389
container_issue 21
container_start_page 18369
container_title Neural computing & applications
container_volume 34
creator Ramezani, Majid
Feizi-Derakhshi, Mohammad-Reza
Balafar, Mohammad-Ali
Asgari-Chenaghlu, Meysam
Feizi-Derakhshi, Ali-Reza
Nikzad-Khasmakhi, Narjes
Ranjbar-Khadivi, Mehrdad
Jahanbakhsh-Nagadeh, Zoleikha
Zafarani-Moattar, Elnaz
Akan, Taymaz
description Human personality is significantly represented by those words which he/she uses in his/her speech or writing. As a consequence of spreading the information infrastructures (specifically the Internet and social media), human communications have reformed notably from face to face communication. Generally, Automatic Personality Prediction (or Perception) (APP) is the automated forecasting of the personality on different types of human generated/exchanged contents (like text, speech, image, video, etc.). The major objective of this study is to enhance the accuracy of APP from the text. To this end, we suggest five new APP methods including term frequency vector-based, ontology-based, enriched ontology-based, latent semantic analysis (LSA)-based, and deep learning-based (BiLSTM) methods. These methods as the base ones, contribute to each other to enhance the APP accuracy through ensemble modeling (stacking) based on a hierarchical attention network (HAN) as the meta-model. The results show that ensemble modeling enhances the accuracy of APP.
doi_str_mv 10.1007/s00521-022-07444-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726619214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726619214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f82c35431eaea25071fd3216a56c2e358d537180d1f7f9aef1024427aadff4693</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouFb_AU8Fz9XJZ1tvy-IXLHjRc4jNZLdL29SkPex_b7SCN08Db957zPwIuaZwSwHKuwggGS2AsQJKIUShTsiKCs4LDrI6JSuoRVorwc_JRYwHABCqkiuyXc-T783UNvmIIfrBdO10zMeAtm2m1g_3uRlyHPZmaNDmPU57b_M5tsMuqRH7jw7z3lvsknJJzpzpIl79zoy8Pz68bZ6L7evTy2a9LRpO66lwFWu4FJyiQcMklNRZzqgyUjUMuays5CWtwFJXutqgo8CEYKUx1jmhap6Rm6V3DP5zxjjpg59DOj1qVjKlaM3S7xlhi6sJPsaATo-h7U04agr6m5peqOlETf9Q0yqF-BKKyTzsMPxV_5P6AlkAb6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726619214</pqid></control><display><type>article</type><title>Automatic personality prediction: an enhanced method using ensemble modeling</title><source>SpringerLink Journals</source><creator>Ramezani, Majid ; Feizi-Derakhshi, Mohammad-Reza ; Balafar, Mohammad-Ali ; Asgari-Chenaghlu, Meysam ; Feizi-Derakhshi, Ali-Reza ; Nikzad-Khasmakhi, Narjes ; Ranjbar-Khadivi, Mehrdad ; Jahanbakhsh-Nagadeh, Zoleikha ; Zafarani-Moattar, Elnaz ; Akan, Taymaz</creator><creatorcontrib>Ramezani, Majid ; Feizi-Derakhshi, Mohammad-Reza ; Balafar, Mohammad-Ali ; Asgari-Chenaghlu, Meysam ; Feizi-Derakhshi, Ali-Reza ; Nikzad-Khasmakhi, Narjes ; Ranjbar-Khadivi, Mehrdad ; Jahanbakhsh-Nagadeh, Zoleikha ; Zafarani-Moattar, Elnaz ; Akan, Taymaz</creatorcontrib><description>Human personality is significantly represented by those words which he/she uses in his/her speech or writing. As a consequence of spreading the information infrastructures (specifically the Internet and social media), human communications have reformed notably from face to face communication. Generally, Automatic Personality Prediction (or Perception) (APP) is the automated forecasting of the personality on different types of human generated/exchanged contents (like text, speech, image, video, etc.). The major objective of this study is to enhance the accuracy of APP from the text. To this end, we suggest five new APP methods including term frequency vector-based, ontology-based, enriched ontology-based, latent semantic analysis (LSA)-based, and deep learning-based (BiLSTM) methods. These methods as the base ones, contribute to each other to enhance the APP accuracy through ensemble modeling (stacking) based on a hierarchical attention network (HAN) as the meta-model. The results show that ensemble modeling enhances the accuracy of APP.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-07444-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Deep learning ; Human communication ; Hypotheses ; Image enhancement ; Image Processing and Computer Vision ; Literature reviews ; Methods ; Model accuracy ; Modelling ; Ontology ; Original Article ; Personality ; Personality traits ; Probability and Statistics in Computer Science ; Semantic analysis ; Semantics ; Social networks ; Speech ; Verbal communication</subject><ispartof>Neural computing &amp; applications, 2022-11, Vol.34 (21), p.18369-18389</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f82c35431eaea25071fd3216a56c2e358d537180d1f7f9aef1024427aadff4693</citedby><cites>FETCH-LOGICAL-c319t-f82c35431eaea25071fd3216a56c2e358d537180d1f7f9aef1024427aadff4693</cites><orcidid>0000-0001-5898-0871 ; 0000-0002-8548-976X ; 0000-0003-0886-7023 ; 0000-0002-7892-9675 ; 0000-0003-4070-1058 ; 0000-0003-3036-1651 ; 0000-0002-3441-8224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-022-07444-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-022-07444-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ramezani, Majid</creatorcontrib><creatorcontrib>Feizi-Derakhshi, Mohammad-Reza</creatorcontrib><creatorcontrib>Balafar, Mohammad-Ali</creatorcontrib><creatorcontrib>Asgari-Chenaghlu, Meysam</creatorcontrib><creatorcontrib>Feizi-Derakhshi, Ali-Reza</creatorcontrib><creatorcontrib>Nikzad-Khasmakhi, Narjes</creatorcontrib><creatorcontrib>Ranjbar-Khadivi, Mehrdad</creatorcontrib><creatorcontrib>Jahanbakhsh-Nagadeh, Zoleikha</creatorcontrib><creatorcontrib>Zafarani-Moattar, Elnaz</creatorcontrib><creatorcontrib>Akan, Taymaz</creatorcontrib><title>Automatic personality prediction: an enhanced method using ensemble modeling</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Human personality is significantly represented by those words which he/she uses in his/her speech or writing. As a consequence of spreading the information infrastructures (specifically the Internet and social media), human communications have reformed notably from face to face communication. Generally, Automatic Personality Prediction (or Perception) (APP) is the automated forecasting of the personality on different types of human generated/exchanged contents (like text, speech, image, video, etc.). The major objective of this study is to enhance the accuracy of APP from the text. To this end, we suggest five new APP methods including term frequency vector-based, ontology-based, enriched ontology-based, latent semantic analysis (LSA)-based, and deep learning-based (BiLSTM) methods. These methods as the base ones, contribute to each other to enhance the APP accuracy through ensemble modeling (stacking) based on a hierarchical attention network (HAN) as the meta-model. The results show that ensemble modeling enhances the accuracy of APP.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Deep learning</subject><subject>Human communication</subject><subject>Hypotheses</subject><subject>Image enhancement</subject><subject>Image Processing and Computer Vision</subject><subject>Literature reviews</subject><subject>Methods</subject><subject>Model accuracy</subject><subject>Modelling</subject><subject>Ontology</subject><subject>Original Article</subject><subject>Personality</subject><subject>Personality traits</subject><subject>Probability and Statistics in Computer Science</subject><subject>Semantic analysis</subject><subject>Semantics</subject><subject>Social networks</subject><subject>Speech</subject><subject>Verbal communication</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1LxDAQxYMouFb_AU8Fz9XJZ1tvy-IXLHjRc4jNZLdL29SkPex_b7SCN08Db957zPwIuaZwSwHKuwggGS2AsQJKIUShTsiKCs4LDrI6JSuoRVorwc_JRYwHABCqkiuyXc-T783UNvmIIfrBdO10zMeAtm2m1g_3uRlyHPZmaNDmPU57b_M5tsMuqRH7jw7z3lvsknJJzpzpIl79zoy8Pz68bZ6L7evTy2a9LRpO66lwFWu4FJyiQcMklNRZzqgyUjUMuays5CWtwFJXutqgo8CEYKUx1jmhap6Rm6V3DP5zxjjpg59DOj1qVjKlaM3S7xlhi6sJPsaATo-h7U04agr6m5peqOlETf9Q0yqF-BKKyTzsMPxV_5P6AlkAb6U</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Ramezani, Majid</creator><creator>Feizi-Derakhshi, Mohammad-Reza</creator><creator>Balafar, Mohammad-Ali</creator><creator>Asgari-Chenaghlu, Meysam</creator><creator>Feizi-Derakhshi, Ali-Reza</creator><creator>Nikzad-Khasmakhi, Narjes</creator><creator>Ranjbar-Khadivi, Mehrdad</creator><creator>Jahanbakhsh-Nagadeh, Zoleikha</creator><creator>Zafarani-Moattar, Elnaz</creator><creator>Akan, Taymaz</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5898-0871</orcidid><orcidid>https://orcid.org/0000-0002-8548-976X</orcidid><orcidid>https://orcid.org/0000-0003-0886-7023</orcidid><orcidid>https://orcid.org/0000-0002-7892-9675</orcidid><orcidid>https://orcid.org/0000-0003-4070-1058</orcidid><orcidid>https://orcid.org/0000-0003-3036-1651</orcidid><orcidid>https://orcid.org/0000-0002-3441-8224</orcidid></search><sort><creationdate>20221101</creationdate><title>Automatic personality prediction: an enhanced method using ensemble modeling</title><author>Ramezani, Majid ; Feizi-Derakhshi, Mohammad-Reza ; Balafar, Mohammad-Ali ; Asgari-Chenaghlu, Meysam ; Feizi-Derakhshi, Ali-Reza ; Nikzad-Khasmakhi, Narjes ; Ranjbar-Khadivi, Mehrdad ; Jahanbakhsh-Nagadeh, Zoleikha ; Zafarani-Moattar, Elnaz ; Akan, Taymaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f82c35431eaea25071fd3216a56c2e358d537180d1f7f9aef1024427aadff4693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Deep learning</topic><topic>Human communication</topic><topic>Hypotheses</topic><topic>Image enhancement</topic><topic>Image Processing and Computer Vision</topic><topic>Literature reviews</topic><topic>Methods</topic><topic>Model accuracy</topic><topic>Modelling</topic><topic>Ontology</topic><topic>Original Article</topic><topic>Personality</topic><topic>Personality traits</topic><topic>Probability and Statistics in Computer Science</topic><topic>Semantic analysis</topic><topic>Semantics</topic><topic>Social networks</topic><topic>Speech</topic><topic>Verbal communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramezani, Majid</creatorcontrib><creatorcontrib>Feizi-Derakhshi, Mohammad-Reza</creatorcontrib><creatorcontrib>Balafar, Mohammad-Ali</creatorcontrib><creatorcontrib>Asgari-Chenaghlu, Meysam</creatorcontrib><creatorcontrib>Feizi-Derakhshi, Ali-Reza</creatorcontrib><creatorcontrib>Nikzad-Khasmakhi, Narjes</creatorcontrib><creatorcontrib>Ranjbar-Khadivi, Mehrdad</creatorcontrib><creatorcontrib>Jahanbakhsh-Nagadeh, Zoleikha</creatorcontrib><creatorcontrib>Zafarani-Moattar, Elnaz</creatorcontrib><creatorcontrib>Akan, Taymaz</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramezani, Majid</au><au>Feizi-Derakhshi, Mohammad-Reza</au><au>Balafar, Mohammad-Ali</au><au>Asgari-Chenaghlu, Meysam</au><au>Feizi-Derakhshi, Ali-Reza</au><au>Nikzad-Khasmakhi, Narjes</au><au>Ranjbar-Khadivi, Mehrdad</au><au>Jahanbakhsh-Nagadeh, Zoleikha</au><au>Zafarani-Moattar, Elnaz</au><au>Akan, Taymaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic personality prediction: an enhanced method using ensemble modeling</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>34</volume><issue>21</issue><spage>18369</spage><epage>18389</epage><pages>18369-18389</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Human personality is significantly represented by those words which he/she uses in his/her speech or writing. As a consequence of spreading the information infrastructures (specifically the Internet and social media), human communications have reformed notably from face to face communication. Generally, Automatic Personality Prediction (or Perception) (APP) is the automated forecasting of the personality on different types of human generated/exchanged contents (like text, speech, image, video, etc.). The major objective of this study is to enhance the accuracy of APP from the text. To this end, we suggest five new APP methods including term frequency vector-based, ontology-based, enriched ontology-based, latent semantic analysis (LSA)-based, and deep learning-based (BiLSTM) methods. These methods as the base ones, contribute to each other to enhance the APP accuracy through ensemble modeling (stacking) based on a hierarchical attention network (HAN) as the meta-model. The results show that ensemble modeling enhances the accuracy of APP.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-07444-6</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-5898-0871</orcidid><orcidid>https://orcid.org/0000-0002-8548-976X</orcidid><orcidid>https://orcid.org/0000-0003-0886-7023</orcidid><orcidid>https://orcid.org/0000-0002-7892-9675</orcidid><orcidid>https://orcid.org/0000-0003-4070-1058</orcidid><orcidid>https://orcid.org/0000-0003-3036-1651</orcidid><orcidid>https://orcid.org/0000-0002-3441-8224</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2022-11, Vol.34 (21), p.18369-18389
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2726619214
source SpringerLink Journals
subjects Accuracy
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer engineering
Computer Science
Data Mining and Knowledge Discovery
Deep learning
Human communication
Hypotheses
Image enhancement
Image Processing and Computer Vision
Literature reviews
Methods
Model accuracy
Modelling
Ontology
Original Article
Personality
Personality traits
Probability and Statistics in Computer Science
Semantic analysis
Semantics
Social networks
Speech
Verbal communication
title Automatic personality prediction: an enhanced method using ensemble modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T08%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20personality%20prediction:%20an%20enhanced%20method%20using%20ensemble%20modeling&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Ramezani,%20Majid&rft.date=2022-11-01&rft.volume=34&rft.issue=21&rft.spage=18369&rft.epage=18389&rft.pages=18369-18389&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-07444-6&rft_dat=%3Cproquest_cross%3E2726619214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726619214&rft_id=info:pmid/&rfr_iscdi=true