Three-field floating projection topology optimization of continuum structures

Topology optimization using the variable substitution among three fields can achieve a design with desired solid and/or void features. This paper proposes a three-field floating projection topology optimization (FPTO) method using the linear material interpolation. The implicit floating projection c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2022-09, Vol.399, p.115444, Article 115444
Hauptverfasser: Huang, Xiaodong, Li, Weibai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115444
container_title Computer methods in applied mechanics and engineering
container_volume 399
creator Huang, Xiaodong
Li, Weibai
description Topology optimization using the variable substitution among three fields can achieve a design with desired solid and/or void features. This paper proposes a three-field floating projection topology optimization (FPTO) method using the linear material interpolation. The implicit floating projection constraint is used as an engine for generating a 0/1 solution at the design field. The substitution filtering and projection schemes enhance the length scale and solid/void features to accelerate the formation of structural topology in the physical field. Meanwhile, the three-field FPTO method can be extended to robust formulation, which obtains the eroded, intermediate, and dilated designs with the same topology. The most distinct feature of the FPTO method lies in the adoption of the linear material interpolation scheme, which makes many topology optimization problems straightforward. As an example, the proposed three-field FPTO algorithm is further applied to the design of shell-infill structures using the linear multi-material interpolation scheme. The distribution of the shell material is generated through a simple filtering scheme, and the shell thickness is accurately controlled by the filter radius. Numerical examples are presented to demonstrate the effectiveness and advantage of the proposed three-field FPTO method. •A three-field floating projection topology optimization method is proposed.•The algorithm can use the linear material interpolation scheme.•The algorithm is extended straightforwardly for robust formulation.•A simple approach for the topology optimization of shell-infill structures is proposed.
doi_str_mv 10.1016/j.cma.2022.115444
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726496057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782522004844</els_id><sourcerecordid>2726496057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-f741ada13f8949bfceee5d2d7aae4d7d1d301121a02f668f7fe623da46c3663</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD5-gLuC69YkTdMWVzL4ghEXzj7E5GZMaZuapML4681Y197Ngcs59x4-hK4ILggm_KYr1CALiiktCKkYY0doRZq6zSkpm2O0wphVed3Q6hSdhdDhNA2hK_Sy_fAAubHQ68z0TkY77rLJuw5UtG7Moptc73b7zE3RDvZb_m6dyZQbk3eehyxEP6s4ewgX6MTIPsDln56jt4f77fop37w-Pq_vNrkqaRVzUzMitSSlaVrWvhsFAJWmupYSmK410SUmhBKJqeG8MbUBTkstGVcl5-U5ul6uppqfM4QoOjf7MT0UtKactRxXdXKRxaW8C8GDEZO3g_R7QbA4MBOdSMzEgZlYmKXM7ZKBVP7LghdBWRgVaOsTD6Gd_Sf9A719deQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726496057</pqid></control><display><type>article</type><title>Three-field floating projection topology optimization of continuum structures</title><source>Access via ScienceDirect (Elsevier)</source><creator>Huang, Xiaodong ; Li, Weibai</creator><creatorcontrib>Huang, Xiaodong ; Li, Weibai</creatorcontrib><description>Topology optimization using the variable substitution among three fields can achieve a design with desired solid and/or void features. This paper proposes a three-field floating projection topology optimization (FPTO) method using the linear material interpolation. The implicit floating projection constraint is used as an engine for generating a 0/1 solution at the design field. The substitution filtering and projection schemes enhance the length scale and solid/void features to accelerate the formation of structural topology in the physical field. Meanwhile, the three-field FPTO method can be extended to robust formulation, which obtains the eroded, intermediate, and dilated designs with the same topology. The most distinct feature of the FPTO method lies in the adoption of the linear material interpolation scheme, which makes many topology optimization problems straightforward. As an example, the proposed three-field FPTO algorithm is further applied to the design of shell-infill structures using the linear multi-material interpolation scheme. The distribution of the shell material is generated through a simple filtering scheme, and the shell thickness is accurately controlled by the filter radius. Numerical examples are presented to demonstrate the effectiveness and advantage of the proposed three-field FPTO method. •A three-field floating projection topology optimization method is proposed.•The algorithm can use the linear material interpolation scheme.•The algorithm is extended straightforwardly for robust formulation.•A simple approach for the topology optimization of shell-infill structures is proposed.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2022.115444</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Filtration ; Implicit floating projection constraint ; Interpolation ; Optimization ; Robust formulation ; Robustness (mathematics) ; Shell-infill structures ; Substitutes ; Topology optimization</subject><ispartof>Computer methods in applied mechanics and engineering, 2022-09, Vol.399, p.115444, Article 115444</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-f741ada13f8949bfceee5d2d7aae4d7d1d301121a02f668f7fe623da46c3663</citedby><cites>FETCH-LOGICAL-c325t-f741ada13f8949bfceee5d2d7aae4d7d1d301121a02f668f7fe623da46c3663</cites><orcidid>0000-0002-0176-2686 ; 0000-0002-3150-0353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2022.115444$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Huang, Xiaodong</creatorcontrib><creatorcontrib>Li, Weibai</creatorcontrib><title>Three-field floating projection topology optimization of continuum structures</title><title>Computer methods in applied mechanics and engineering</title><description>Topology optimization using the variable substitution among three fields can achieve a design with desired solid and/or void features. This paper proposes a three-field floating projection topology optimization (FPTO) method using the linear material interpolation. The implicit floating projection constraint is used as an engine for generating a 0/1 solution at the design field. The substitution filtering and projection schemes enhance the length scale and solid/void features to accelerate the formation of structural topology in the physical field. Meanwhile, the three-field FPTO method can be extended to robust formulation, which obtains the eroded, intermediate, and dilated designs with the same topology. The most distinct feature of the FPTO method lies in the adoption of the linear material interpolation scheme, which makes many topology optimization problems straightforward. As an example, the proposed three-field FPTO algorithm is further applied to the design of shell-infill structures using the linear multi-material interpolation scheme. The distribution of the shell material is generated through a simple filtering scheme, and the shell thickness is accurately controlled by the filter radius. Numerical examples are presented to demonstrate the effectiveness and advantage of the proposed three-field FPTO method. •A three-field floating projection topology optimization method is proposed.•The algorithm can use the linear material interpolation scheme.•The algorithm is extended straightforwardly for robust formulation.•A simple approach for the topology optimization of shell-infill structures is proposed.</description><subject>Algorithms</subject><subject>Filtration</subject><subject>Implicit floating projection constraint</subject><subject>Interpolation</subject><subject>Optimization</subject><subject>Robust formulation</subject><subject>Robustness (mathematics)</subject><subject>Shell-infill structures</subject><subject>Substitutes</subject><subject>Topology optimization</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD5-gLuC69YkTdMWVzL4ghEXzj7E5GZMaZuapML4681Y197Ngcs59x4-hK4ILggm_KYr1CALiiktCKkYY0doRZq6zSkpm2O0wphVed3Q6hSdhdDhNA2hK_Sy_fAAubHQ68z0TkY77rLJuw5UtG7Moptc73b7zE3RDvZb_m6dyZQbk3eehyxEP6s4ewgX6MTIPsDln56jt4f77fop37w-Pq_vNrkqaRVzUzMitSSlaVrWvhsFAJWmupYSmK410SUmhBKJqeG8MbUBTkstGVcl5-U5ul6uppqfM4QoOjf7MT0UtKactRxXdXKRxaW8C8GDEZO3g_R7QbA4MBOdSMzEgZlYmKXM7ZKBVP7LghdBWRgVaOsTD6Gd_Sf9A719deQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Huang, Xiaodong</creator><creator>Li, Weibai</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0176-2686</orcidid><orcidid>https://orcid.org/0000-0002-3150-0353</orcidid></search><sort><creationdate>20220901</creationdate><title>Three-field floating projection topology optimization of continuum structures</title><author>Huang, Xiaodong ; Li, Weibai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-f741ada13f8949bfceee5d2d7aae4d7d1d301121a02f668f7fe623da46c3663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Filtration</topic><topic>Implicit floating projection constraint</topic><topic>Interpolation</topic><topic>Optimization</topic><topic>Robust formulation</topic><topic>Robustness (mathematics)</topic><topic>Shell-infill structures</topic><topic>Substitutes</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xiaodong</creatorcontrib><creatorcontrib>Li, Weibai</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xiaodong</au><au>Li, Weibai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-field floating projection topology optimization of continuum structures</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>399</volume><spage>115444</spage><pages>115444-</pages><artnum>115444</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>Topology optimization using the variable substitution among three fields can achieve a design with desired solid and/or void features. This paper proposes a three-field floating projection topology optimization (FPTO) method using the linear material interpolation. The implicit floating projection constraint is used as an engine for generating a 0/1 solution at the design field. The substitution filtering and projection schemes enhance the length scale and solid/void features to accelerate the formation of structural topology in the physical field. Meanwhile, the three-field FPTO method can be extended to robust formulation, which obtains the eroded, intermediate, and dilated designs with the same topology. The most distinct feature of the FPTO method lies in the adoption of the linear material interpolation scheme, which makes many topology optimization problems straightforward. As an example, the proposed three-field FPTO algorithm is further applied to the design of shell-infill structures using the linear multi-material interpolation scheme. The distribution of the shell material is generated through a simple filtering scheme, and the shell thickness is accurately controlled by the filter radius. Numerical examples are presented to demonstrate the effectiveness and advantage of the proposed three-field FPTO method. •A three-field floating projection topology optimization method is proposed.•The algorithm can use the linear material interpolation scheme.•The algorithm is extended straightforwardly for robust formulation.•A simple approach for the topology optimization of shell-infill structures is proposed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2022.115444</doi><orcidid>https://orcid.org/0000-0002-0176-2686</orcidid><orcidid>https://orcid.org/0000-0002-3150-0353</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2022-09, Vol.399, p.115444, Article 115444
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_2726496057
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Filtration
Implicit floating projection constraint
Interpolation
Optimization
Robust formulation
Robustness (mathematics)
Shell-infill structures
Substitutes
Topology optimization
title Three-field floating projection topology optimization of continuum structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A52%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-field%20floating%20projection%20topology%20optimization%20of%20continuum%20structures&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Huang,%20Xiaodong&rft.date=2022-09-01&rft.volume=399&rft.spage=115444&rft.pages=115444-&rft.artnum=115444&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2022.115444&rft_dat=%3Cproquest_cross%3E2726496057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726496057&rft_id=info:pmid/&rft_els_id=S0045782522004844&rfr_iscdi=true