Optimal multilevel adaptive FEM for the Argyris element
The main drawback for the application of the conforming Argyris FEM is the labourious implementation on the one hand and the low convergence rates on the other. If no appropriate adaptive meshes are utilised, only the convergence rate caused by corner singularities (Blum and Rannacher, 1980), far be...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2022-09, Vol.399, p.115352, Article 115352 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 115352 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 399 |
creator | Gräßle, Benedikt |
description | The main drawback for the application of the conforming Argyris FEM is the labourious implementation on the one hand and the low convergence rates on the other. If no appropriate adaptive meshes are utilised, only the convergence rate caused by corner singularities (Blum and Rannacher, 1980), far below the approximation order for smooth functions, can be achieved. The fine approximation with the Argyris FEM produces high-dimensional linear systems and for a long time an optimal preconditioned scheme was not available for unstructured grids. This paper presents numerical benchmarks to confirm that the adaptive multilevel solver for the hierarchical Argyris FEM from Carstensen and Hu (2021) is in fact highly efficient and of linear time complexity. Moreover, the very first display of optimal convergence rates in practically relevant benchmarks with corner singularities and general boundary conditions leads to the rehabilitation of the Argyris finite element from the computational perspective. |
doi_str_mv | 10.1016/j.cma.2022.115352 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726493357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726493357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-eaf931980300d4dfc005ccb3a51f2475c4e77458b2c0f72fe8f6cbf9387efb243</originalsourceid><addsrcrecordid>eNotkEFLAzEQhXNQsFZ_gLeA510nk6TZHktpVaj0oueQTSfaZbdbk91C_70pdS4PhvdmeB9jTwJKAWL20pS-cyUCYimElhpv2ARA6cJUqO_YfUoN5KkETpjZHod951reje2wb-lELXc7l5cn4uvVBw995MMP8UX8Psd94tRSR4fhgd0G1yZ6_Ncp-1qvPpdvxWb7-r5cbAqPRg4FuTCXYl6BBNipXfAA2vtaOi0CKqO9ImOUrmr0EAwGqsLM1zlTGQo1Kjllz9e7x9j_jpQG2_RjPOSXFg3O1FxKbbJLXF0-9ilFCvYYc6t4tgLshYltbGZiL0zslYn8A6g7VpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726493357</pqid></control><display><type>article</type><title>Optimal multilevel adaptive FEM for the Argyris element</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gräßle, Benedikt</creator><creatorcontrib>Gräßle, Benedikt</creatorcontrib><description>The main drawback for the application of the conforming Argyris FEM is the labourious implementation on the one hand and the low convergence rates on the other. If no appropriate adaptive meshes are utilised, only the convergence rate caused by corner singularities (Blum and Rannacher, 1980), far below the approximation order for smooth functions, can be achieved. The fine approximation with the Argyris FEM produces high-dimensional linear systems and for a long time an optimal preconditioned scheme was not available for unstructured grids. This paper presents numerical benchmarks to confirm that the adaptive multilevel solver for the hierarchical Argyris FEM from Carstensen and Hu (2021) is in fact highly efficient and of linear time complexity. Moreover, the very first display of optimal convergence rates in practically relevant benchmarks with corner singularities and general boundary conditions leads to the rehabilitation of the Argyris finite element from the computational perspective.</description><identifier>ISSN: 0045-7825</identifier><identifier>DOI: 10.1016/j.cma.2022.115352</identifier><language>eng</language><publisher>Amsterdam: Elsevier BV</publisher><subject>Approximation ; Benchmarks ; Boundary conditions ; Convergence ; Finite element method ; Linear systems ; Mathematical analysis ; Rehabilitation ; Singularities ; Unstructured grids (mathematics)</subject><ispartof>Computer methods in applied mechanics and engineering, 2022-09, Vol.399, p.115352, Article 115352</ispartof><rights>Copyright Elsevier BV Sep 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-eaf931980300d4dfc005ccb3a51f2475c4e77458b2c0f72fe8f6cbf9387efb243</citedby><cites>FETCH-LOGICAL-c273t-eaf931980300d4dfc005ccb3a51f2475c4e77458b2c0f72fe8f6cbf9387efb243</cites><orcidid>0000-0003-0114-9512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Gräßle, Benedikt</creatorcontrib><title>Optimal multilevel adaptive FEM for the Argyris element</title><title>Computer methods in applied mechanics and engineering</title><description>The main drawback for the application of the conforming Argyris FEM is the labourious implementation on the one hand and the low convergence rates on the other. If no appropriate adaptive meshes are utilised, only the convergence rate caused by corner singularities (Blum and Rannacher, 1980), far below the approximation order for smooth functions, can be achieved. The fine approximation with the Argyris FEM produces high-dimensional linear systems and for a long time an optimal preconditioned scheme was not available for unstructured grids. This paper presents numerical benchmarks to confirm that the adaptive multilevel solver for the hierarchical Argyris FEM from Carstensen and Hu (2021) is in fact highly efficient and of linear time complexity. Moreover, the very first display of optimal convergence rates in practically relevant benchmarks with corner singularities and general boundary conditions leads to the rehabilitation of the Argyris finite element from the computational perspective.</description><subject>Approximation</subject><subject>Benchmarks</subject><subject>Boundary conditions</subject><subject>Convergence</subject><subject>Finite element method</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Rehabilitation</subject><subject>Singularities</subject><subject>Unstructured grids (mathematics)</subject><issn>0045-7825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkEFLAzEQhXNQsFZ_gLeA510nk6TZHktpVaj0oueQTSfaZbdbk91C_70pdS4PhvdmeB9jTwJKAWL20pS-cyUCYimElhpv2ARA6cJUqO_YfUoN5KkETpjZHod951reje2wb-lELXc7l5cn4uvVBw995MMP8UX8Psd94tRSR4fhgd0G1yZ6_Ncp-1qvPpdvxWb7-r5cbAqPRg4FuTCXYl6BBNipXfAA2vtaOi0CKqO9ImOUrmr0EAwGqsLM1zlTGQo1Kjllz9e7x9j_jpQG2_RjPOSXFg3O1FxKbbJLXF0-9ilFCvYYc6t4tgLshYltbGZiL0zslYn8A6g7VpU</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Gräßle, Benedikt</creator><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0114-9512</orcidid></search><sort><creationdate>202209</creationdate><title>Optimal multilevel adaptive FEM for the Argyris element</title><author>Gräßle, Benedikt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-eaf931980300d4dfc005ccb3a51f2475c4e77458b2c0f72fe8f6cbf9387efb243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Benchmarks</topic><topic>Boundary conditions</topic><topic>Convergence</topic><topic>Finite element method</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Rehabilitation</topic><topic>Singularities</topic><topic>Unstructured grids (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gräßle, Benedikt</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gräßle, Benedikt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal multilevel adaptive FEM for the Argyris element</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2022-09</date><risdate>2022</risdate><volume>399</volume><spage>115352</spage><pages>115352-</pages><artnum>115352</artnum><issn>0045-7825</issn><abstract>The main drawback for the application of the conforming Argyris FEM is the labourious implementation on the one hand and the low convergence rates on the other. If no appropriate adaptive meshes are utilised, only the convergence rate caused by corner singularities (Blum and Rannacher, 1980), far below the approximation order for smooth functions, can be achieved. The fine approximation with the Argyris FEM produces high-dimensional linear systems and for a long time an optimal preconditioned scheme was not available for unstructured grids. This paper presents numerical benchmarks to confirm that the adaptive multilevel solver for the hierarchical Argyris FEM from Carstensen and Hu (2021) is in fact highly efficient and of linear time complexity. Moreover, the very first display of optimal convergence rates in practically relevant benchmarks with corner singularities and general boundary conditions leads to the rehabilitation of the Argyris finite element from the computational perspective.</abstract><cop>Amsterdam</cop><pub>Elsevier BV</pub><doi>10.1016/j.cma.2022.115352</doi><orcidid>https://orcid.org/0000-0003-0114-9512</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2022-09, Vol.399, p.115352, Article 115352 |
issn | 0045-7825 |
language | eng |
recordid | cdi_proquest_journals_2726493357 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Approximation Benchmarks Boundary conditions Convergence Finite element method Linear systems Mathematical analysis Rehabilitation Singularities Unstructured grids (mathematics) |
title | Optimal multilevel adaptive FEM for the Argyris element |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20multilevel%20adaptive%20FEM%20for%20the%20Argyris%20element&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Gr%C3%A4%C3%9Fle,%20Benedikt&rft.date=2022-09&rft.volume=399&rft.spage=115352&rft.pages=115352-&rft.artnum=115352&rft.issn=0045-7825&rft_id=info:doi/10.1016/j.cma.2022.115352&rft_dat=%3Cproquest_cross%3E2726493357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726493357&rft_id=info:pmid/&rfr_iscdi=true |