Optimal multilevel adaptive FEM for the Argyris element

The main drawback for the application of the conforming Argyris FEM is the labourious implementation on the one hand and the low convergence rates on the other. If no appropriate adaptive meshes are utilised, only the convergence rate caused by corner singularities (Blum and Rannacher, 1980), far be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2022-09, Vol.399, p.115352, Article 115352
1. Verfasser: Gräßle, Benedikt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115352
container_title Computer methods in applied mechanics and engineering
container_volume 399
creator Gräßle, Benedikt
description The main drawback for the application of the conforming Argyris FEM is the labourious implementation on the one hand and the low convergence rates on the other. If no appropriate adaptive meshes are utilised, only the convergence rate caused by corner singularities (Blum and Rannacher, 1980), far below the approximation order for smooth functions, can be achieved. The fine approximation with the Argyris FEM produces high-dimensional linear systems and for a long time an optimal preconditioned scheme was not available for unstructured grids. This paper presents numerical benchmarks to confirm that the adaptive multilevel solver for the hierarchical Argyris FEM from Carstensen and Hu (2021) is in fact highly efficient and of linear time complexity. Moreover, the very first display of optimal convergence rates in practically relevant benchmarks with corner singularities and general boundary conditions leads to the rehabilitation of the Argyris finite element from the computational perspective.
doi_str_mv 10.1016/j.cma.2022.115352
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726493357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726493357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-eaf931980300d4dfc005ccb3a51f2475c4e77458b2c0f72fe8f6cbf9387efb243</originalsourceid><addsrcrecordid>eNotkEFLAzEQhXNQsFZ_gLeA510nk6TZHktpVaj0oueQTSfaZbdbk91C_70pdS4PhvdmeB9jTwJKAWL20pS-cyUCYimElhpv2ARA6cJUqO_YfUoN5KkETpjZHod951reje2wb-lELXc7l5cn4uvVBw995MMP8UX8Psd94tRSR4fhgd0G1yZ6_Ncp-1qvPpdvxWb7-r5cbAqPRg4FuTCXYl6BBNipXfAA2vtaOi0CKqO9ImOUrmr0EAwGqsLM1zlTGQo1Kjllz9e7x9j_jpQG2_RjPOSXFg3O1FxKbbJLXF0-9ilFCvYYc6t4tgLshYltbGZiL0zslYn8A6g7VpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726493357</pqid></control><display><type>article</type><title>Optimal multilevel adaptive FEM for the Argyris element</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gräßle, Benedikt</creator><creatorcontrib>Gräßle, Benedikt</creatorcontrib><description>The main drawback for the application of the conforming Argyris FEM is the labourious implementation on the one hand and the low convergence rates on the other. If no appropriate adaptive meshes are utilised, only the convergence rate caused by corner singularities (Blum and Rannacher, 1980), far below the approximation order for smooth functions, can be achieved. The fine approximation with the Argyris FEM produces high-dimensional linear systems and for a long time an optimal preconditioned scheme was not available for unstructured grids. This paper presents numerical benchmarks to confirm that the adaptive multilevel solver for the hierarchical Argyris FEM from Carstensen and Hu (2021) is in fact highly efficient and of linear time complexity. Moreover, the very first display of optimal convergence rates in practically relevant benchmarks with corner singularities and general boundary conditions leads to the rehabilitation of the Argyris finite element from the computational perspective.</description><identifier>ISSN: 0045-7825</identifier><identifier>DOI: 10.1016/j.cma.2022.115352</identifier><language>eng</language><publisher>Amsterdam: Elsevier BV</publisher><subject>Approximation ; Benchmarks ; Boundary conditions ; Convergence ; Finite element method ; Linear systems ; Mathematical analysis ; Rehabilitation ; Singularities ; Unstructured grids (mathematics)</subject><ispartof>Computer methods in applied mechanics and engineering, 2022-09, Vol.399, p.115352, Article 115352</ispartof><rights>Copyright Elsevier BV Sep 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-eaf931980300d4dfc005ccb3a51f2475c4e77458b2c0f72fe8f6cbf9387efb243</citedby><cites>FETCH-LOGICAL-c273t-eaf931980300d4dfc005ccb3a51f2475c4e77458b2c0f72fe8f6cbf9387efb243</cites><orcidid>0000-0003-0114-9512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Gräßle, Benedikt</creatorcontrib><title>Optimal multilevel adaptive FEM for the Argyris element</title><title>Computer methods in applied mechanics and engineering</title><description>The main drawback for the application of the conforming Argyris FEM is the labourious implementation on the one hand and the low convergence rates on the other. If no appropriate adaptive meshes are utilised, only the convergence rate caused by corner singularities (Blum and Rannacher, 1980), far below the approximation order for smooth functions, can be achieved. The fine approximation with the Argyris FEM produces high-dimensional linear systems and for a long time an optimal preconditioned scheme was not available for unstructured grids. This paper presents numerical benchmarks to confirm that the adaptive multilevel solver for the hierarchical Argyris FEM from Carstensen and Hu (2021) is in fact highly efficient and of linear time complexity. Moreover, the very first display of optimal convergence rates in practically relevant benchmarks with corner singularities and general boundary conditions leads to the rehabilitation of the Argyris finite element from the computational perspective.</description><subject>Approximation</subject><subject>Benchmarks</subject><subject>Boundary conditions</subject><subject>Convergence</subject><subject>Finite element method</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Rehabilitation</subject><subject>Singularities</subject><subject>Unstructured grids (mathematics)</subject><issn>0045-7825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkEFLAzEQhXNQsFZ_gLeA510nk6TZHktpVaj0oueQTSfaZbdbk91C_70pdS4PhvdmeB9jTwJKAWL20pS-cyUCYimElhpv2ARA6cJUqO_YfUoN5KkETpjZHod951reje2wb-lELXc7l5cn4uvVBw995MMP8UX8Psd94tRSR4fhgd0G1yZ6_Ncp-1qvPpdvxWb7-r5cbAqPRg4FuTCXYl6BBNipXfAA2vtaOi0CKqO9ImOUrmr0EAwGqsLM1zlTGQo1Kjllz9e7x9j_jpQG2_RjPOSXFg3O1FxKbbJLXF0-9ilFCvYYc6t4tgLshYltbGZiL0zslYn8A6g7VpU</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Gräßle, Benedikt</creator><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0114-9512</orcidid></search><sort><creationdate>202209</creationdate><title>Optimal multilevel adaptive FEM for the Argyris element</title><author>Gräßle, Benedikt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-eaf931980300d4dfc005ccb3a51f2475c4e77458b2c0f72fe8f6cbf9387efb243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Benchmarks</topic><topic>Boundary conditions</topic><topic>Convergence</topic><topic>Finite element method</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Rehabilitation</topic><topic>Singularities</topic><topic>Unstructured grids (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gräßle, Benedikt</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gräßle, Benedikt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal multilevel adaptive FEM for the Argyris element</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2022-09</date><risdate>2022</risdate><volume>399</volume><spage>115352</spage><pages>115352-</pages><artnum>115352</artnum><issn>0045-7825</issn><abstract>The main drawback for the application of the conforming Argyris FEM is the labourious implementation on the one hand and the low convergence rates on the other. If no appropriate adaptive meshes are utilised, only the convergence rate caused by corner singularities (Blum and Rannacher, 1980), far below the approximation order for smooth functions, can be achieved. The fine approximation with the Argyris FEM produces high-dimensional linear systems and for a long time an optimal preconditioned scheme was not available for unstructured grids. This paper presents numerical benchmarks to confirm that the adaptive multilevel solver for the hierarchical Argyris FEM from Carstensen and Hu (2021) is in fact highly efficient and of linear time complexity. Moreover, the very first display of optimal convergence rates in practically relevant benchmarks with corner singularities and general boundary conditions leads to the rehabilitation of the Argyris finite element from the computational perspective.</abstract><cop>Amsterdam</cop><pub>Elsevier BV</pub><doi>10.1016/j.cma.2022.115352</doi><orcidid>https://orcid.org/0000-0003-0114-9512</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2022-09, Vol.399, p.115352, Article 115352
issn 0045-7825
language eng
recordid cdi_proquest_journals_2726493357
source Elsevier ScienceDirect Journals Complete
subjects Approximation
Benchmarks
Boundary conditions
Convergence
Finite element method
Linear systems
Mathematical analysis
Rehabilitation
Singularities
Unstructured grids (mathematics)
title Optimal multilevel adaptive FEM for the Argyris element
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20multilevel%20adaptive%20FEM%20for%20the%20Argyris%20element&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Gr%C3%A4%C3%9Fle,%20Benedikt&rft.date=2022-09&rft.volume=399&rft.spage=115352&rft.pages=115352-&rft.artnum=115352&rft.issn=0045-7825&rft_id=info:doi/10.1016/j.cma.2022.115352&rft_dat=%3Cproquest_cross%3E2726493357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726493357&rft_id=info:pmid/&rfr_iscdi=true