2D and Slab Turbulent Cascade Rates in the Inner Heliosphere
We present a theoretical and observational study of 2D and slab turbulence cascade (or heating) rates of transverse total turbulence energies, transverse cross helicity, transverse outward and inward Elsässer energy, transverse fluctuating magnetic energy density, and transverse fluctuating kinetic...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2022-10, Vol.938 (2), p.120 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 120 |
container_title | The Astrophysical journal |
container_volume | 938 |
creator | Adhikari, L. Zank, G. P. Zhao, L.-L. Telloni, D. |
description | We present a theoretical and observational study of 2D and slab turbulence cascade (or heating) rates of transverse total turbulence energies, transverse cross helicity, transverse outward and inward Elsässer energy, transverse fluctuating magnetic energy density, and transverse fluctuating kinetic energy from the perihelion of the first Parker Solar Probe (PSP) orbit at ∼36.6
R
⊙
to Solar Orbiter (SolO) at ∼177
R
⊙
. We use the Adhikari et al. (2021a) approach to calculate the observed transverse turbulence heating rate, and the nearly incompressible magnetohydrodynamic (NI MHD) turbulence transport theory to calculate the theoretical turbulence cascade rate. We find from the 1 day long PSP measurements at 66.5
R
⊙
, and the SolO measurements at 176.3
R
⊙
that various transverse turbulent cascade rates increase with increasing angle, from 10° to 98°, between the mean solar wind speed and mean magnetic field (
θ
UB
), indicating that the 2D heating rate is largest in the inner heliosphere. Similarly, we find from the theoretical and observed results that the 2D heating rate is larger than the slab heating rate as a function of heliocentric distance. We present a comparison between the theoretical and observed 2D and slab turbulence cascade rates as a function of heliocentric distance. |
doi_str_mv | 10.3847/1538-4357/ac9234 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726475670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726475670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-631746bcc92c33204599fdb92043e5a7b19f6802748740309d262706051708e73</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoWEf3LgNurXPzaG4DbmR8zMCAoCO4C2mbMh1qW5N24b-3paIrV_fBOfdcPkIuGdyIVOKSJSKNpUhwaXPNhTwi0e_qmEQAIGMl8P2UnIVwmEaudURu-T21TUFfa5vR3eCzoXZNT1c25LZw9MX2LtCqof3e0U3TOE_Xrq7a0O2dd-fkpLR1cBc_dUHeHh92q3W8fX7arO62cc5T6MdYhlJl-fhXLgQHmWhdFpkeO-ESixnTpUqBo0xRggBdcMURFCQMIXUoFuRqvtv59nNwoTeHdvDNGGk4ciUxUQijCmZV7tsQvCtN56sP678MAzMxMhMQMwExM6PRcj1bqrb7u_mv_BsxPGM6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726475670</pqid></control><display><type>article</type><title>2D and Slab Turbulent Cascade Rates in the Inner Heliosphere</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Adhikari, L. ; Zank, G. P. ; Zhao, L.-L. ; Telloni, D.</creator><creatorcontrib>Adhikari, L. ; Zank, G. P. ; Zhao, L.-L. ; Telloni, D.</creatorcontrib><description>We present a theoretical and observational study of 2D and slab turbulence cascade (or heating) rates of transverse total turbulence energies, transverse cross helicity, transverse outward and inward Elsässer energy, transverse fluctuating magnetic energy density, and transverse fluctuating kinetic energy from the perihelion of the first Parker Solar Probe (PSP) orbit at ∼36.6
R
⊙
to Solar Orbiter (SolO) at ∼177
R
⊙
. We use the Adhikari et al. (2021a) approach to calculate the observed transverse turbulence heating rate, and the nearly incompressible magnetohydrodynamic (NI MHD) turbulence transport theory to calculate the theoretical turbulence cascade rate. We find from the 1 day long PSP measurements at 66.5
R
⊙
, and the SolO measurements at 176.3
R
⊙
that various transverse turbulent cascade rates increase with increasing angle, from 10° to 98°, between the mean solar wind speed and mean magnetic field (
θ
UB
), indicating that the 2D heating rate is largest in the inner heliosphere. Similarly, we find from the theoretical and observed results that the 2D heating rate is larger than the slab heating rate as a function of heliocentric distance. We present a comparison between the theoretical and observed 2D and slab turbulence cascade rates as a function of heliocentric distance.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac9234</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Fluid flow ; Heating rate ; Helicity ; Heliosphere ; Interplanetary turbulence ; Kinetic energy ; Magnetic fields ; Magnetohydrodynamic turbulence ; Mathematical analysis ; Perihelions ; Solar magnetic field ; Solar Orbiter (ESA) ; Solar orbits ; Solar probes ; Solar wind ; Solar wind speed ; The Sun ; Transport theory ; Turbulence ; Turbulent flow ; Wind speed</subject><ispartof>The Astrophysical journal, 2022-10, Vol.938 (2), p.120</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-631746bcc92c33204599fdb92043e5a7b19f6802748740309d262706051708e73</citedby><cites>FETCH-LOGICAL-c280t-631746bcc92c33204599fdb92043e5a7b19f6802748740309d262706051708e73</cites><orcidid>0000-0002-6710-8142 ; 0000-0002-4299-0490 ; 0000-0002-4642-6192 ; 0000-0003-1549-5256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac9234/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,778,782,862,27907,27908,38873,53850</link.rule.ids></links><search><creatorcontrib>Adhikari, L.</creatorcontrib><creatorcontrib>Zank, G. P.</creatorcontrib><creatorcontrib>Zhao, L.-L.</creatorcontrib><creatorcontrib>Telloni, D.</creatorcontrib><title>2D and Slab Turbulent Cascade Rates in the Inner Heliosphere</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present a theoretical and observational study of 2D and slab turbulence cascade (or heating) rates of transverse total turbulence energies, transverse cross helicity, transverse outward and inward Elsässer energy, transverse fluctuating magnetic energy density, and transverse fluctuating kinetic energy from the perihelion of the first Parker Solar Probe (PSP) orbit at ∼36.6
R
⊙
to Solar Orbiter (SolO) at ∼177
R
⊙
. We use the Adhikari et al. (2021a) approach to calculate the observed transverse turbulence heating rate, and the nearly incompressible magnetohydrodynamic (NI MHD) turbulence transport theory to calculate the theoretical turbulence cascade rate. We find from the 1 day long PSP measurements at 66.5
R
⊙
, and the SolO measurements at 176.3
R
⊙
that various transverse turbulent cascade rates increase with increasing angle, from 10° to 98°, between the mean solar wind speed and mean magnetic field (
θ
UB
), indicating that the 2D heating rate is largest in the inner heliosphere. Similarly, we find from the theoretical and observed results that the 2D heating rate is larger than the slab heating rate as a function of heliocentric distance. We present a comparison between the theoretical and observed 2D and slab turbulence cascade rates as a function of heliocentric distance.</description><subject>Astrophysics</subject><subject>Fluid flow</subject><subject>Heating rate</subject><subject>Helicity</subject><subject>Heliosphere</subject><subject>Interplanetary turbulence</subject><subject>Kinetic energy</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Mathematical analysis</subject><subject>Perihelions</subject><subject>Solar magnetic field</subject><subject>Solar Orbiter (ESA)</subject><subject>Solar orbits</subject><subject>Solar probes</subject><subject>Solar wind</subject><subject>Solar wind speed</subject><subject>The Sun</subject><subject>Transport theory</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Wind speed</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kEtLxDAUhYMoWEf3LgNurXPzaG4DbmR8zMCAoCO4C2mbMh1qW5N24b-3paIrV_fBOfdcPkIuGdyIVOKSJSKNpUhwaXPNhTwi0e_qmEQAIGMl8P2UnIVwmEaudURu-T21TUFfa5vR3eCzoXZNT1c25LZw9MX2LtCqof3e0U3TOE_Xrq7a0O2dd-fkpLR1cBc_dUHeHh92q3W8fX7arO62cc5T6MdYhlJl-fhXLgQHmWhdFpkeO-ESixnTpUqBo0xRggBdcMURFCQMIXUoFuRqvtv59nNwoTeHdvDNGGk4ciUxUQijCmZV7tsQvCtN56sP678MAzMxMhMQMwExM6PRcj1bqrb7u_mv_BsxPGM6</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Adhikari, L.</creator><creator>Zank, G. P.</creator><creator>Zhao, L.-L.</creator><creator>Telloni, D.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6710-8142</orcidid><orcidid>https://orcid.org/0000-0002-4299-0490</orcidid><orcidid>https://orcid.org/0000-0002-4642-6192</orcidid><orcidid>https://orcid.org/0000-0003-1549-5256</orcidid></search><sort><creationdate>20221001</creationdate><title>2D and Slab Turbulent Cascade Rates in the Inner Heliosphere</title><author>Adhikari, L. ; Zank, G. P. ; Zhao, L.-L. ; Telloni, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-631746bcc92c33204599fdb92043e5a7b19f6802748740309d262706051708e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astrophysics</topic><topic>Fluid flow</topic><topic>Heating rate</topic><topic>Helicity</topic><topic>Heliosphere</topic><topic>Interplanetary turbulence</topic><topic>Kinetic energy</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Mathematical analysis</topic><topic>Perihelions</topic><topic>Solar magnetic field</topic><topic>Solar Orbiter (ESA)</topic><topic>Solar orbits</topic><topic>Solar probes</topic><topic>Solar wind</topic><topic>Solar wind speed</topic><topic>The Sun</topic><topic>Transport theory</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adhikari, L.</creatorcontrib><creatorcontrib>Zank, G. P.</creatorcontrib><creatorcontrib>Zhao, L.-L.</creatorcontrib><creatorcontrib>Telloni, D.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adhikari, L.</au><au>Zank, G. P.</au><au>Zhao, L.-L.</au><au>Telloni, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D and Slab Turbulent Cascade Rates in the Inner Heliosphere</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>938</volume><issue>2</issue><spage>120</spage><pages>120-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present a theoretical and observational study of 2D and slab turbulence cascade (or heating) rates of transverse total turbulence energies, transverse cross helicity, transverse outward and inward Elsässer energy, transverse fluctuating magnetic energy density, and transverse fluctuating kinetic energy from the perihelion of the first Parker Solar Probe (PSP) orbit at ∼36.6
R
⊙
to Solar Orbiter (SolO) at ∼177
R
⊙
. We use the Adhikari et al. (2021a) approach to calculate the observed transverse turbulence heating rate, and the nearly incompressible magnetohydrodynamic (NI MHD) turbulence transport theory to calculate the theoretical turbulence cascade rate. We find from the 1 day long PSP measurements at 66.5
R
⊙
, and the SolO measurements at 176.3
R
⊙
that various transverse turbulent cascade rates increase with increasing angle, from 10° to 98°, between the mean solar wind speed and mean magnetic field (
θ
UB
), indicating that the 2D heating rate is largest in the inner heliosphere. Similarly, we find from the theoretical and observed results that the 2D heating rate is larger than the slab heating rate as a function of heliocentric distance. We present a comparison between the theoretical and observed 2D and slab turbulence cascade rates as a function of heliocentric distance.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac9234</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6710-8142</orcidid><orcidid>https://orcid.org/0000-0002-4299-0490</orcidid><orcidid>https://orcid.org/0000-0002-4642-6192</orcidid><orcidid>https://orcid.org/0000-0003-1549-5256</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2022-10, Vol.938 (2), p.120 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2726475670 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Astrophysics Fluid flow Heating rate Helicity Heliosphere Interplanetary turbulence Kinetic energy Magnetic fields Magnetohydrodynamic turbulence Mathematical analysis Perihelions Solar magnetic field Solar Orbiter (ESA) Solar orbits Solar probes Solar wind Solar wind speed The Sun Transport theory Turbulence Turbulent flow Wind speed |
title | 2D and Slab Turbulent Cascade Rates in the Inner Heliosphere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%20and%20Slab%20Turbulent%20Cascade%20Rates%20in%20the%20Inner%20Heliosphere&rft.jtitle=The%20Astrophysical%20journal&rft.au=Adhikari,%20L.&rft.date=2022-10-01&rft.volume=938&rft.issue=2&rft.spage=120&rft.pages=120-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac9234&rft_dat=%3Cproquest_cross%3E2726475670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726475670&rft_id=info:pmid/&rfr_iscdi=true |