Automatic clustering based on dynamic parameters harmony search optimization algorithm

As a typical unsupervised learning technique, clustering has been widely applied. However, in many cases, prior information about the number of clusters is unknown, so how to determine it automatically in clustering is getting more attention. In this article, a method named automatic clustering base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern analysis and applications : PAA 2022-11, Vol.25 (4), p.693-709
Hauptverfasser: Zhu, Qidan, Tang, Xiangmeng, Elahi, Ahsan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 709
container_issue 4
container_start_page 693
container_title Pattern analysis and applications : PAA
container_volume 25
creator Zhu, Qidan
Tang, Xiangmeng
Elahi, Ahsan
description As a typical unsupervised learning technique, clustering has been widely applied. However, in many cases, prior information about the number of clusters is unknown, so how to determine it automatically in clustering is getting more attention. In this article, a method named automatic clustering based on dynamic parameters harmony search optimization algorithm, i.e., AC-DPHS, is proposed to solve this problem. By improving the basic harmony search (HS), the dynamic parameters harmony search (DPHS) is devised, which makes the parameters change dynamically without pre-definition. The AC-DPHS takes advantage of the merits of both DPHS and K-means clustering and can determine the optimal number of clusters automatically. A comprehensive experiment is carried out to evaluate the performance of AC-DPHS. The results illustrate that the AC-DPHS generated by using the PBM validity index as its fitness function is relatively superior, and it performs over other approaches developed recently in real-life data clustering as well as grayscale images segmentation. Consequently, the method explained in this article is effectiveness and practical, which can be considered as a new automatic clustering scheme.
doi_str_mv 10.1007/s10044-022-01065-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726451996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726451996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-d39d448928d54ee93d97a54c2a8955ac6949ca53ca49c6cfdbbc74f80c36c1323</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouD6-gKeA52qebXNcFl-w4EXFW5hN0t0u26Ym6WH99Gat6M3LzMD_MfBD6IqSG0pIdRvzFKIgjBWEklIW4gjNqOC8qKR8P_69BT1FZzFuCeGcs3qG3uZj8h2k1mCzG2Nyoe3XeAXRWex7bPc9dFkbIEDnshrxBkLn-z2ODoLZYD-ktms_c0O2w27tQ5s23QU6aWAX3eXPPkev93cvi8di-fzwtJgvC8OESoXlygpRK1ZbKZxT3KoKpDAMaiUlmFIJZUByA3mXprGrlalEUxPDS0M54-foeuodgv8YXUx668fQ55eaVawUkipVZhebXCb4GINr9BDaDsJeU6IP_PTET2d--pufFjnEp1AcDkxc-Kv-J_UFz910mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726451996</pqid></control><display><type>article</type><title>Automatic clustering based on dynamic parameters harmony search optimization algorithm</title><source>SpringerNature Journals</source><creator>Zhu, Qidan ; Tang, Xiangmeng ; Elahi, Ahsan</creator><creatorcontrib>Zhu, Qidan ; Tang, Xiangmeng ; Elahi, Ahsan</creatorcontrib><description>As a typical unsupervised learning technique, clustering has been widely applied. However, in many cases, prior information about the number of clusters is unknown, so how to determine it automatically in clustering is getting more attention. In this article, a method named automatic clustering based on dynamic parameters harmony search optimization algorithm, i.e., AC-DPHS, is proposed to solve this problem. By improving the basic harmony search (HS), the dynamic parameters harmony search (DPHS) is devised, which makes the parameters change dynamically without pre-definition. The AC-DPHS takes advantage of the merits of both DPHS and K-means clustering and can determine the optimal number of clusters automatically. A comprehensive experiment is carried out to evaluate the performance of AC-DPHS. The results illustrate that the AC-DPHS generated by using the PBM validity index as its fitness function is relatively superior, and it performs over other approaches developed recently in real-life data clustering as well as grayscale images segmentation. Consequently, the method explained in this article is effectiveness and practical, which can be considered as a new automatic clustering scheme.</description><identifier>ISSN: 1433-7541</identifier><identifier>EISSN: 1433-755X</identifier><identifier>DOI: 10.1007/s10044-022-01065-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Cluster analysis ; Clustering ; Computer Science ; Image segmentation ; Machine learning ; Optimization ; Optimization algorithms ; Parameters ; Pattern Recognition ; Searching ; Theoretical Advances ; Vector quantization</subject><ispartof>Pattern analysis and applications : PAA, 2022-11, Vol.25 (4), p.693-709</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-d39d448928d54ee93d97a54c2a8955ac6949ca53ca49c6cfdbbc74f80c36c1323</citedby><cites>FETCH-LOGICAL-c249t-d39d448928d54ee93d97a54c2a8955ac6949ca53ca49c6cfdbbc74f80c36c1323</cites><orcidid>0000-0002-4279-6567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10044-022-01065-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10044-022-01065-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Zhu, Qidan</creatorcontrib><creatorcontrib>Tang, Xiangmeng</creatorcontrib><creatorcontrib>Elahi, Ahsan</creatorcontrib><title>Automatic clustering based on dynamic parameters harmony search optimization algorithm</title><title>Pattern analysis and applications : PAA</title><addtitle>Pattern Anal Applic</addtitle><description>As a typical unsupervised learning technique, clustering has been widely applied. However, in many cases, prior information about the number of clusters is unknown, so how to determine it automatically in clustering is getting more attention. In this article, a method named automatic clustering based on dynamic parameters harmony search optimization algorithm, i.e., AC-DPHS, is proposed to solve this problem. By improving the basic harmony search (HS), the dynamic parameters harmony search (DPHS) is devised, which makes the parameters change dynamically without pre-definition. The AC-DPHS takes advantage of the merits of both DPHS and K-means clustering and can determine the optimal number of clusters automatically. A comprehensive experiment is carried out to evaluate the performance of AC-DPHS. The results illustrate that the AC-DPHS generated by using the PBM validity index as its fitness function is relatively superior, and it performs over other approaches developed recently in real-life data clustering as well as grayscale images segmentation. Consequently, the method explained in this article is effectiveness and practical, which can be considered as a new automatic clustering scheme.</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Parameters</subject><subject>Pattern Recognition</subject><subject>Searching</subject><subject>Theoretical Advances</subject><subject>Vector quantization</subject><issn>1433-7541</issn><issn>1433-755X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQx4MouD6-gKeA52qebXNcFl-w4EXFW5hN0t0u26Ym6WH99Gat6M3LzMD_MfBD6IqSG0pIdRvzFKIgjBWEklIW4gjNqOC8qKR8P_69BT1FZzFuCeGcs3qG3uZj8h2k1mCzG2Nyoe3XeAXRWex7bPc9dFkbIEDnshrxBkLn-z2ODoLZYD-ktms_c0O2w27tQ5s23QU6aWAX3eXPPkev93cvi8di-fzwtJgvC8OESoXlygpRK1ZbKZxT3KoKpDAMaiUlmFIJZUByA3mXprGrlalEUxPDS0M54-foeuodgv8YXUx668fQ55eaVawUkipVZhebXCb4GINr9BDaDsJeU6IP_PTET2d--pufFjnEp1AcDkxc-Kv-J_UFz910mw</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Zhu, Qidan</creator><creator>Tang, Xiangmeng</creator><creator>Elahi, Ahsan</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4279-6567</orcidid></search><sort><creationdate>20221101</creationdate><title>Automatic clustering based on dynamic parameters harmony search optimization algorithm</title><author>Zhu, Qidan ; Tang, Xiangmeng ; Elahi, Ahsan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-d39d448928d54ee93d97a54c2a8955ac6949ca53ca49c6cfdbbc74f80c36c1323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Parameters</topic><topic>Pattern Recognition</topic><topic>Searching</topic><topic>Theoretical Advances</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Qidan</creatorcontrib><creatorcontrib>Tang, Xiangmeng</creatorcontrib><creatorcontrib>Elahi, Ahsan</creatorcontrib><collection>CrossRef</collection><jtitle>Pattern analysis and applications : PAA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Qidan</au><au>Tang, Xiangmeng</au><au>Elahi, Ahsan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic clustering based on dynamic parameters harmony search optimization algorithm</atitle><jtitle>Pattern analysis and applications : PAA</jtitle><stitle>Pattern Anal Applic</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>25</volume><issue>4</issue><spage>693</spage><epage>709</epage><pages>693-709</pages><issn>1433-7541</issn><eissn>1433-755X</eissn><abstract>As a typical unsupervised learning technique, clustering has been widely applied. However, in many cases, prior information about the number of clusters is unknown, so how to determine it automatically in clustering is getting more attention. In this article, a method named automatic clustering based on dynamic parameters harmony search optimization algorithm, i.e., AC-DPHS, is proposed to solve this problem. By improving the basic harmony search (HS), the dynamic parameters harmony search (DPHS) is devised, which makes the parameters change dynamically without pre-definition. The AC-DPHS takes advantage of the merits of both DPHS and K-means clustering and can determine the optimal number of clusters automatically. A comprehensive experiment is carried out to evaluate the performance of AC-DPHS. The results illustrate that the AC-DPHS generated by using the PBM validity index as its fitness function is relatively superior, and it performs over other approaches developed recently in real-life data clustering as well as grayscale images segmentation. Consequently, the method explained in this article is effectiveness and practical, which can be considered as a new automatic clustering scheme.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10044-022-01065-4</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4279-6567</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7541
ispartof Pattern analysis and applications : PAA, 2022-11, Vol.25 (4), p.693-709
issn 1433-7541
1433-755X
language eng
recordid cdi_proquest_journals_2726451996
source SpringerNature Journals
subjects Algorithms
Cluster analysis
Clustering
Computer Science
Image segmentation
Machine learning
Optimization
Optimization algorithms
Parameters
Pattern Recognition
Searching
Theoretical Advances
Vector quantization
title Automatic clustering based on dynamic parameters harmony search optimization algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T03%3A50%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20clustering%20based%20on%20dynamic%20parameters%20harmony%20search%20optimization%20algorithm&rft.jtitle=Pattern%20analysis%20and%20applications%20:%20PAA&rft.au=Zhu,%20Qidan&rft.date=2022-11-01&rft.volume=25&rft.issue=4&rft.spage=693&rft.epage=709&rft.pages=693-709&rft.issn=1433-7541&rft.eissn=1433-755X&rft_id=info:doi/10.1007/s10044-022-01065-4&rft_dat=%3Cproquest_cross%3E2726451996%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726451996&rft_id=info:pmid/&rfr_iscdi=true