Automatic clustering based on dynamic parameters harmony search optimization algorithm
As a typical unsupervised learning technique, clustering has been widely applied. However, in many cases, prior information about the number of clusters is unknown, so how to determine it automatically in clustering is getting more attention. In this article, a method named automatic clustering base...
Gespeichert in:
Veröffentlicht in: | Pattern analysis and applications : PAA 2022-11, Vol.25 (4), p.693-709 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 709 |
---|---|
container_issue | 4 |
container_start_page | 693 |
container_title | Pattern analysis and applications : PAA |
container_volume | 25 |
creator | Zhu, Qidan Tang, Xiangmeng Elahi, Ahsan |
description | As a typical unsupervised learning technique, clustering has been widely applied. However, in many cases, prior information about the number of clusters is unknown, so how to determine it automatically in clustering is getting more attention. In this article, a method named automatic clustering based on dynamic parameters harmony search optimization algorithm, i.e., AC-DPHS, is proposed to solve this problem. By improving the basic harmony search (HS), the dynamic parameters harmony search (DPHS) is devised, which makes the parameters change dynamically without pre-definition. The AC-DPHS takes advantage of the merits of both DPHS and K-means clustering and can determine the optimal number of clusters automatically. A comprehensive experiment is carried out to evaluate the performance of AC-DPHS. The results illustrate that the AC-DPHS generated by using the PBM validity index as its fitness function is relatively superior, and it performs over other approaches developed recently in real-life data clustering as well as grayscale images segmentation. Consequently, the method explained in this article is effectiveness and practical, which can be considered as a new automatic clustering scheme. |
doi_str_mv | 10.1007/s10044-022-01065-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726451996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726451996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-d39d448928d54ee93d97a54c2a8955ac6949ca53ca49c6cfdbbc74f80c36c1323</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouD6-gKeA52qebXNcFl-w4EXFW5hN0t0u26Ym6WH99Gat6M3LzMD_MfBD6IqSG0pIdRvzFKIgjBWEklIW4gjNqOC8qKR8P_69BT1FZzFuCeGcs3qG3uZj8h2k1mCzG2Nyoe3XeAXRWex7bPc9dFkbIEDnshrxBkLn-z2ODoLZYD-ktms_c0O2w27tQ5s23QU6aWAX3eXPPkev93cvi8di-fzwtJgvC8OESoXlygpRK1ZbKZxT3KoKpDAMaiUlmFIJZUByA3mXprGrlalEUxPDS0M54-foeuodgv8YXUx668fQ55eaVawUkipVZhebXCb4GINr9BDaDsJeU6IP_PTET2d--pufFjnEp1AcDkxc-Kv-J_UFz910mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726451996</pqid></control><display><type>article</type><title>Automatic clustering based on dynamic parameters harmony search optimization algorithm</title><source>SpringerNature Journals</source><creator>Zhu, Qidan ; Tang, Xiangmeng ; Elahi, Ahsan</creator><creatorcontrib>Zhu, Qidan ; Tang, Xiangmeng ; Elahi, Ahsan</creatorcontrib><description>As a typical unsupervised learning technique, clustering has been widely applied. However, in many cases, prior information about the number of clusters is unknown, so how to determine it automatically in clustering is getting more attention. In this article, a method named automatic clustering based on dynamic parameters harmony search optimization algorithm, i.e., AC-DPHS, is proposed to solve this problem. By improving the basic harmony search (HS), the dynamic parameters harmony search (DPHS) is devised, which makes the parameters change dynamically without pre-definition. The AC-DPHS takes advantage of the merits of both DPHS and K-means clustering and can determine the optimal number of clusters automatically. A comprehensive experiment is carried out to evaluate the performance of AC-DPHS. The results illustrate that the AC-DPHS generated by using the PBM validity index as its fitness function is relatively superior, and it performs over other approaches developed recently in real-life data clustering as well as grayscale images segmentation. Consequently, the method explained in this article is effectiveness and practical, which can be considered as a new automatic clustering scheme.</description><identifier>ISSN: 1433-7541</identifier><identifier>EISSN: 1433-755X</identifier><identifier>DOI: 10.1007/s10044-022-01065-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Cluster analysis ; Clustering ; Computer Science ; Image segmentation ; Machine learning ; Optimization ; Optimization algorithms ; Parameters ; Pattern Recognition ; Searching ; Theoretical Advances ; Vector quantization</subject><ispartof>Pattern analysis and applications : PAA, 2022-11, Vol.25 (4), p.693-709</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-d39d448928d54ee93d97a54c2a8955ac6949ca53ca49c6cfdbbc74f80c36c1323</citedby><cites>FETCH-LOGICAL-c249t-d39d448928d54ee93d97a54c2a8955ac6949ca53ca49c6cfdbbc74f80c36c1323</cites><orcidid>0000-0002-4279-6567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10044-022-01065-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10044-022-01065-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Zhu, Qidan</creatorcontrib><creatorcontrib>Tang, Xiangmeng</creatorcontrib><creatorcontrib>Elahi, Ahsan</creatorcontrib><title>Automatic clustering based on dynamic parameters harmony search optimization algorithm</title><title>Pattern analysis and applications : PAA</title><addtitle>Pattern Anal Applic</addtitle><description>As a typical unsupervised learning technique, clustering has been widely applied. However, in many cases, prior information about the number of clusters is unknown, so how to determine it automatically in clustering is getting more attention. In this article, a method named automatic clustering based on dynamic parameters harmony search optimization algorithm, i.e., AC-DPHS, is proposed to solve this problem. By improving the basic harmony search (HS), the dynamic parameters harmony search (DPHS) is devised, which makes the parameters change dynamically without pre-definition. The AC-DPHS takes advantage of the merits of both DPHS and K-means clustering and can determine the optimal number of clusters automatically. A comprehensive experiment is carried out to evaluate the performance of AC-DPHS. The results illustrate that the AC-DPHS generated by using the PBM validity index as its fitness function is relatively superior, and it performs over other approaches developed recently in real-life data clustering as well as grayscale images segmentation. Consequently, the method explained in this article is effectiveness and practical, which can be considered as a new automatic clustering scheme.</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Parameters</subject><subject>Pattern Recognition</subject><subject>Searching</subject><subject>Theoretical Advances</subject><subject>Vector quantization</subject><issn>1433-7541</issn><issn>1433-755X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQx4MouD6-gKeA52qebXNcFl-w4EXFW5hN0t0u26Ym6WH99Gat6M3LzMD_MfBD6IqSG0pIdRvzFKIgjBWEklIW4gjNqOC8qKR8P_69BT1FZzFuCeGcs3qG3uZj8h2k1mCzG2Nyoe3XeAXRWex7bPc9dFkbIEDnshrxBkLn-z2ODoLZYD-ktms_c0O2w27tQ5s23QU6aWAX3eXPPkev93cvi8di-fzwtJgvC8OESoXlygpRK1ZbKZxT3KoKpDAMaiUlmFIJZUByA3mXprGrlalEUxPDS0M54-foeuodgv8YXUx668fQ55eaVawUkipVZhebXCb4GINr9BDaDsJeU6IP_PTET2d--pufFjnEp1AcDkxc-Kv-J_UFz910mw</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Zhu, Qidan</creator><creator>Tang, Xiangmeng</creator><creator>Elahi, Ahsan</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4279-6567</orcidid></search><sort><creationdate>20221101</creationdate><title>Automatic clustering based on dynamic parameters harmony search optimization algorithm</title><author>Zhu, Qidan ; Tang, Xiangmeng ; Elahi, Ahsan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-d39d448928d54ee93d97a54c2a8955ac6949ca53ca49c6cfdbbc74f80c36c1323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Parameters</topic><topic>Pattern Recognition</topic><topic>Searching</topic><topic>Theoretical Advances</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Qidan</creatorcontrib><creatorcontrib>Tang, Xiangmeng</creatorcontrib><creatorcontrib>Elahi, Ahsan</creatorcontrib><collection>CrossRef</collection><jtitle>Pattern analysis and applications : PAA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Qidan</au><au>Tang, Xiangmeng</au><au>Elahi, Ahsan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic clustering based on dynamic parameters harmony search optimization algorithm</atitle><jtitle>Pattern analysis and applications : PAA</jtitle><stitle>Pattern Anal Applic</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>25</volume><issue>4</issue><spage>693</spage><epage>709</epage><pages>693-709</pages><issn>1433-7541</issn><eissn>1433-755X</eissn><abstract>As a typical unsupervised learning technique, clustering has been widely applied. However, in many cases, prior information about the number of clusters is unknown, so how to determine it automatically in clustering is getting more attention. In this article, a method named automatic clustering based on dynamic parameters harmony search optimization algorithm, i.e., AC-DPHS, is proposed to solve this problem. By improving the basic harmony search (HS), the dynamic parameters harmony search (DPHS) is devised, which makes the parameters change dynamically without pre-definition. The AC-DPHS takes advantage of the merits of both DPHS and K-means clustering and can determine the optimal number of clusters automatically. A comprehensive experiment is carried out to evaluate the performance of AC-DPHS. The results illustrate that the AC-DPHS generated by using the PBM validity index as its fitness function is relatively superior, and it performs over other approaches developed recently in real-life data clustering as well as grayscale images segmentation. Consequently, the method explained in this article is effectiveness and practical, which can be considered as a new automatic clustering scheme.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10044-022-01065-4</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4279-6567</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7541 |
ispartof | Pattern analysis and applications : PAA, 2022-11, Vol.25 (4), p.693-709 |
issn | 1433-7541 1433-755X |
language | eng |
recordid | cdi_proquest_journals_2726451996 |
source | SpringerNature Journals |
subjects | Algorithms Cluster analysis Clustering Computer Science Image segmentation Machine learning Optimization Optimization algorithms Parameters Pattern Recognition Searching Theoretical Advances Vector quantization |
title | Automatic clustering based on dynamic parameters harmony search optimization algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T03%3A50%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20clustering%20based%20on%20dynamic%20parameters%20harmony%20search%20optimization%20algorithm&rft.jtitle=Pattern%20analysis%20and%20applications%20:%20PAA&rft.au=Zhu,%20Qidan&rft.date=2022-11-01&rft.volume=25&rft.issue=4&rft.spage=693&rft.epage=709&rft.pages=693-709&rft.issn=1433-7541&rft.eissn=1433-755X&rft_id=info:doi/10.1007/s10044-022-01065-4&rft_dat=%3Cproquest_cross%3E2726451996%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726451996&rft_id=info:pmid/&rfr_iscdi=true |