Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics

Balancing and improving the open‐circuit voltage (Voc) and short‐circuit current density (Jsc) synergistically has always been the critical point for organic photovoltaics (OPVs) to achieve high efficiencies. Here, this work adopts a ternary strategy to regulate the trade‐off between Voc and Jsc by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2022-10, Vol.12 (39), p.n/a
Hauptverfasser: Zhan, Lingling, Li, Shuixing, Li, Yaokai, Sun, Rui, Min, Jie, Chen, Yiyao, Fang, Jin, Ma, Chang‐Qi, Zhou, Guanqing, Zhu, Haiming, Zuo, Lijian, Qiu, Huayu, Yin, Shouchun, Chen, Hongzheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 39
container_start_page
container_title Advanced energy materials
container_volume 12
creator Zhan, Lingling
Li, Shuixing
Li, Yaokai
Sun, Rui
Min, Jie
Chen, Yiyao
Fang, Jin
Ma, Chang‐Qi
Zhou, Guanqing
Zhu, Haiming
Zuo, Lijian
Qiu, Huayu
Yin, Shouchun
Chen, Hongzheng
description Balancing and improving the open‐circuit voltage (Voc) and short‐circuit current density (Jsc) synergistically has always been the critical point for organic photovoltaics (OPVs) to achieve high efficiencies. Here, this work adopts a ternary strategy to regulate the trade‐off between Voc and Jsc by combining the symmetric‐asymmetric non‐fullerene acceptors that differ at terminals and alkyl side chains to build the ternary OPV (TOPV). It is noticed that the reduced energy disorder and the enhanced luminescence efficiency of TOPV enable a mitigated energy loss and a higher Voc. Meanwhile, the third component, which is distributed at the host donor–acceptor interface, acts as the charge transport channel. The prolonged exciton lifetime, the boosted charge mobility, and the depressed charge recombination promote the TOPV to obtain an improved Jsc. Finally, with synergistically improved Voc and Jsc, the TOPV delivers an optimal efficiency of 19.26% (certified as 19.12%), representing one of the highest values reported so far. Intermediary electron acceptor channels are constructed for manipulating charge transfer and transport, via combing two non‐fullerene acceptors with less miscibility, which synergistically improves Voc and Jsc, and enables ternary organic photovoltaic to exhibit a high efficiency of 19.3%.
doi_str_mv 10.1002/aenm.202201076
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726190081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726190081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-4c394c7747025c4d1be164ddf2ceb301e5e97c4951da351e4e575e7e9fd654de3</originalsourceid><addsrcrecordid>eNqFUE1PwkAQbYwmEuTqeRPjsXW_2mWPhFQlAfGA52bZTmFJ2a27BcMP8H9bUoNH5zIzyfvIe1F0T3BCMKZPCuw-oZhSTLDIrqIByQiPszHH15eb0dtoFMIOd8MlwYwNou-FsqY51Ko1doOmW-U3gFZe2VCBR8qW_dM436KjUWhmW_B7KI3yJ5TXoFvvLJpoDU3r_FnAWqgDyq1a1xAQkQl7RHlVGW3A6hNa-k3nqNH71rXu6OpWGR3uoptK1QFGv3sYfTznq-lrPF--zKaTeawZEVnMNZNcC8EFpqnmJVkDyXhZVlTDmmECKUihuUxJqVhKgEMqUhAgqzJLeQlsGD30uo13nwcIbbFzB287y4IKmhGJ8Zh0qKRHae9C8FAVjTf7LnBBcHFuuzi3XVza7giyJ3yZGk7_oItJ_rb44_4A7LSEoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726190081</pqid></control><display><type>article</type><title>Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhan, Lingling ; Li, Shuixing ; Li, Yaokai ; Sun, Rui ; Min, Jie ; Chen, Yiyao ; Fang, Jin ; Ma, Chang‐Qi ; Zhou, Guanqing ; Zhu, Haiming ; Zuo, Lijian ; Qiu, Huayu ; Yin, Shouchun ; Chen, Hongzheng</creator><creatorcontrib>Zhan, Lingling ; Li, Shuixing ; Li, Yaokai ; Sun, Rui ; Min, Jie ; Chen, Yiyao ; Fang, Jin ; Ma, Chang‐Qi ; Zhou, Guanqing ; Zhu, Haiming ; Zuo, Lijian ; Qiu, Huayu ; Yin, Shouchun ; Chen, Hongzheng</creatorcontrib><description>Balancing and improving the open‐circuit voltage (Voc) and short‐circuit current density (Jsc) synergistically has always been the critical point for organic photovoltaics (OPVs) to achieve high efficiencies. Here, this work adopts a ternary strategy to regulate the trade‐off between Voc and Jsc by combining the symmetric‐asymmetric non‐fullerene acceptors that differ at terminals and alkyl side chains to build the ternary OPV (TOPV). It is noticed that the reduced energy disorder and the enhanced luminescence efficiency of TOPV enable a mitigated energy loss and a higher Voc. Meanwhile, the third component, which is distributed at the host donor–acceptor interface, acts as the charge transport channel. The prolonged exciton lifetime, the boosted charge mobility, and the depressed charge recombination promote the TOPV to obtain an improved Jsc. Finally, with synergistically improved Voc and Jsc, the TOPV delivers an optimal efficiency of 19.26% (certified as 19.12%), representing one of the highest values reported so far. Intermediary electron acceptor channels are constructed for manipulating charge transfer and transport, via combing two non‐fullerene acceptors with less miscibility, which synergistically improves Voc and Jsc, and enables ternary organic photovoltaic to exhibit a high efficiency of 19.3%.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202201076</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Charge transfer ; charge transfer state ; Charge transport ; Circuits ; Critical point ; Efficiency ; energy loss ; Excitons ; high efficiency ; intermediary electron acceptor ; Photovoltaic cells ; ternary organic photovoltaics ; Transport buildings, stations and terminals</subject><ispartof>Advanced energy materials, 2022-10, Vol.12 (39), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-4c394c7747025c4d1be164ddf2ceb301e5e97c4951da351e4e575e7e9fd654de3</citedby><cites>FETCH-LOGICAL-c3176-4c394c7747025c4d1be164ddf2ceb301e5e97c4951da351e4e575e7e9fd654de3</cites><orcidid>0000-0003-2684-8475 ; 0000-0003-1086-1755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202201076$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202201076$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Zhan, Lingling</creatorcontrib><creatorcontrib>Li, Shuixing</creatorcontrib><creatorcontrib>Li, Yaokai</creatorcontrib><creatorcontrib>Sun, Rui</creatorcontrib><creatorcontrib>Min, Jie</creatorcontrib><creatorcontrib>Chen, Yiyao</creatorcontrib><creatorcontrib>Fang, Jin</creatorcontrib><creatorcontrib>Ma, Chang‐Qi</creatorcontrib><creatorcontrib>Zhou, Guanqing</creatorcontrib><creatorcontrib>Zhu, Haiming</creatorcontrib><creatorcontrib>Zuo, Lijian</creatorcontrib><creatorcontrib>Qiu, Huayu</creatorcontrib><creatorcontrib>Yin, Shouchun</creatorcontrib><creatorcontrib>Chen, Hongzheng</creatorcontrib><title>Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics</title><title>Advanced energy materials</title><description>Balancing and improving the open‐circuit voltage (Voc) and short‐circuit current density (Jsc) synergistically has always been the critical point for organic photovoltaics (OPVs) to achieve high efficiencies. Here, this work adopts a ternary strategy to regulate the trade‐off between Voc and Jsc by combining the symmetric‐asymmetric non‐fullerene acceptors that differ at terminals and alkyl side chains to build the ternary OPV (TOPV). It is noticed that the reduced energy disorder and the enhanced luminescence efficiency of TOPV enable a mitigated energy loss and a higher Voc. Meanwhile, the third component, which is distributed at the host donor–acceptor interface, acts as the charge transport channel. The prolonged exciton lifetime, the boosted charge mobility, and the depressed charge recombination promote the TOPV to obtain an improved Jsc. Finally, with synergistically improved Voc and Jsc, the TOPV delivers an optimal efficiency of 19.26% (certified as 19.12%), representing one of the highest values reported so far. Intermediary electron acceptor channels are constructed for manipulating charge transfer and transport, via combing two non‐fullerene acceptors with less miscibility, which synergistically improves Voc and Jsc, and enables ternary organic photovoltaic to exhibit a high efficiency of 19.3%.</description><subject>Charge transfer</subject><subject>charge transfer state</subject><subject>Charge transport</subject><subject>Circuits</subject><subject>Critical point</subject><subject>Efficiency</subject><subject>energy loss</subject><subject>Excitons</subject><subject>high efficiency</subject><subject>intermediary electron acceptor</subject><subject>Photovoltaic cells</subject><subject>ternary organic photovoltaics</subject><subject>Transport buildings, stations and terminals</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUE1PwkAQbYwmEuTqeRPjsXW_2mWPhFQlAfGA52bZTmFJ2a27BcMP8H9bUoNH5zIzyfvIe1F0T3BCMKZPCuw-oZhSTLDIrqIByQiPszHH15eb0dtoFMIOd8MlwYwNou-FsqY51Ko1doOmW-U3gFZe2VCBR8qW_dM436KjUWhmW_B7KI3yJ5TXoFvvLJpoDU3r_FnAWqgDyq1a1xAQkQl7RHlVGW3A6hNa-k3nqNH71rXu6OpWGR3uoptK1QFGv3sYfTznq-lrPF--zKaTeawZEVnMNZNcC8EFpqnmJVkDyXhZVlTDmmECKUihuUxJqVhKgEMqUhAgqzJLeQlsGD30uo13nwcIbbFzB287y4IKmhGJ8Zh0qKRHae9C8FAVjTf7LnBBcHFuuzi3XVza7giyJ3yZGk7_oItJ_rb44_4A7LSEoQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zhan, Lingling</creator><creator>Li, Shuixing</creator><creator>Li, Yaokai</creator><creator>Sun, Rui</creator><creator>Min, Jie</creator><creator>Chen, Yiyao</creator><creator>Fang, Jin</creator><creator>Ma, Chang‐Qi</creator><creator>Zhou, Guanqing</creator><creator>Zhu, Haiming</creator><creator>Zuo, Lijian</creator><creator>Qiu, Huayu</creator><creator>Yin, Shouchun</creator><creator>Chen, Hongzheng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2684-8475</orcidid><orcidid>https://orcid.org/0000-0003-1086-1755</orcidid></search><sort><creationdate>20221001</creationdate><title>Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics</title><author>Zhan, Lingling ; Li, Shuixing ; Li, Yaokai ; Sun, Rui ; Min, Jie ; Chen, Yiyao ; Fang, Jin ; Ma, Chang‐Qi ; Zhou, Guanqing ; Zhu, Haiming ; Zuo, Lijian ; Qiu, Huayu ; Yin, Shouchun ; Chen, Hongzheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-4c394c7747025c4d1be164ddf2ceb301e5e97c4951da351e4e575e7e9fd654de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Charge transfer</topic><topic>charge transfer state</topic><topic>Charge transport</topic><topic>Circuits</topic><topic>Critical point</topic><topic>Efficiency</topic><topic>energy loss</topic><topic>Excitons</topic><topic>high efficiency</topic><topic>intermediary electron acceptor</topic><topic>Photovoltaic cells</topic><topic>ternary organic photovoltaics</topic><topic>Transport buildings, stations and terminals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Lingling</creatorcontrib><creatorcontrib>Li, Shuixing</creatorcontrib><creatorcontrib>Li, Yaokai</creatorcontrib><creatorcontrib>Sun, Rui</creatorcontrib><creatorcontrib>Min, Jie</creatorcontrib><creatorcontrib>Chen, Yiyao</creatorcontrib><creatorcontrib>Fang, Jin</creatorcontrib><creatorcontrib>Ma, Chang‐Qi</creatorcontrib><creatorcontrib>Zhou, Guanqing</creatorcontrib><creatorcontrib>Zhu, Haiming</creatorcontrib><creatorcontrib>Zuo, Lijian</creatorcontrib><creatorcontrib>Qiu, Huayu</creatorcontrib><creatorcontrib>Yin, Shouchun</creatorcontrib><creatorcontrib>Chen, Hongzheng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Lingling</au><au>Li, Shuixing</au><au>Li, Yaokai</au><au>Sun, Rui</au><au>Min, Jie</au><au>Chen, Yiyao</au><au>Fang, Jin</au><au>Ma, Chang‐Qi</au><au>Zhou, Guanqing</au><au>Zhu, Haiming</au><au>Zuo, Lijian</au><au>Qiu, Huayu</au><au>Yin, Shouchun</au><au>Chen, Hongzheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics</atitle><jtitle>Advanced energy materials</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>12</volume><issue>39</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Balancing and improving the open‐circuit voltage (Voc) and short‐circuit current density (Jsc) synergistically has always been the critical point for organic photovoltaics (OPVs) to achieve high efficiencies. Here, this work adopts a ternary strategy to regulate the trade‐off between Voc and Jsc by combining the symmetric‐asymmetric non‐fullerene acceptors that differ at terminals and alkyl side chains to build the ternary OPV (TOPV). It is noticed that the reduced energy disorder and the enhanced luminescence efficiency of TOPV enable a mitigated energy loss and a higher Voc. Meanwhile, the third component, which is distributed at the host donor–acceptor interface, acts as the charge transport channel. The prolonged exciton lifetime, the boosted charge mobility, and the depressed charge recombination promote the TOPV to obtain an improved Jsc. Finally, with synergistically improved Voc and Jsc, the TOPV delivers an optimal efficiency of 19.26% (certified as 19.12%), representing one of the highest values reported so far. Intermediary electron acceptor channels are constructed for manipulating charge transfer and transport, via combing two non‐fullerene acceptors with less miscibility, which synergistically improves Voc and Jsc, and enables ternary organic photovoltaic to exhibit a high efficiency of 19.3%.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202201076</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2684-8475</orcidid><orcidid>https://orcid.org/0000-0003-1086-1755</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2022-10, Vol.12 (39), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2726190081
source Wiley Online Library Journals Frontfile Complete
subjects Charge transfer
charge transfer state
Charge transport
Circuits
Critical point
Efficiency
energy loss
Excitons
high efficiency
intermediary electron acceptor
Photovoltaic cells
ternary organic photovoltaics
Transport buildings, stations and terminals
title Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulating%20Charge%20Transfer%20and%20Transport%20via%20Intermediary%20Electron%20Acceptor%20Channels%20Enables%2019.3%25%20Efficiency%20Organic%20Photovoltaics&rft.jtitle=Advanced%20energy%20materials&rft.au=Zhan,%20Lingling&rft.date=2022-10-01&rft.volume=12&rft.issue=39&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202201076&rft_dat=%3Cproquest_cross%3E2726190081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726190081&rft_id=info:pmid/&rfr_iscdi=true