Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics
Balancing and improving the open‐circuit voltage (Voc) and short‐circuit current density (Jsc) synergistically has always been the critical point for organic photovoltaics (OPVs) to achieve high efficiencies. Here, this work adopts a ternary strategy to regulate the trade‐off between Voc and Jsc by...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2022-10, Vol.12 (39), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 39 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 12 |
creator | Zhan, Lingling Li, Shuixing Li, Yaokai Sun, Rui Min, Jie Chen, Yiyao Fang, Jin Ma, Chang‐Qi Zhou, Guanqing Zhu, Haiming Zuo, Lijian Qiu, Huayu Yin, Shouchun Chen, Hongzheng |
description | Balancing and improving the open‐circuit voltage (Voc) and short‐circuit current density (Jsc) synergistically has always been the critical point for organic photovoltaics (OPVs) to achieve high efficiencies. Here, this work adopts a ternary strategy to regulate the trade‐off between Voc and Jsc by combining the symmetric‐asymmetric non‐fullerene acceptors that differ at terminals and alkyl side chains to build the ternary OPV (TOPV). It is noticed that the reduced energy disorder and the enhanced luminescence efficiency of TOPV enable a mitigated energy loss and a higher Voc. Meanwhile, the third component, which is distributed at the host donor–acceptor interface, acts as the charge transport channel. The prolonged exciton lifetime, the boosted charge mobility, and the depressed charge recombination promote the TOPV to obtain an improved Jsc. Finally, with synergistically improved Voc and Jsc, the TOPV delivers an optimal efficiency of 19.26% (certified as 19.12%), representing one of the highest values reported so far.
Intermediary electron acceptor channels are constructed for manipulating charge transfer and transport, via combing two non‐fullerene acceptors with less miscibility, which synergistically improves Voc and Jsc, and enables ternary organic photovoltaic to exhibit a high efficiency of 19.3%. |
doi_str_mv | 10.1002/aenm.202201076 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726190081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726190081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-4c394c7747025c4d1be164ddf2ceb301e5e97c4951da351e4e575e7e9fd654de3</originalsourceid><addsrcrecordid>eNqFUE1PwkAQbYwmEuTqeRPjsXW_2mWPhFQlAfGA52bZTmFJ2a27BcMP8H9bUoNH5zIzyfvIe1F0T3BCMKZPCuw-oZhSTLDIrqIByQiPszHH15eb0dtoFMIOd8MlwYwNou-FsqY51Ko1doOmW-U3gFZe2VCBR8qW_dM436KjUWhmW_B7KI3yJ5TXoFvvLJpoDU3r_FnAWqgDyq1a1xAQkQl7RHlVGW3A6hNa-k3nqNH71rXu6OpWGR3uoptK1QFGv3sYfTznq-lrPF--zKaTeawZEVnMNZNcC8EFpqnmJVkDyXhZVlTDmmECKUihuUxJqVhKgEMqUhAgqzJLeQlsGD30uo13nwcIbbFzB287y4IKmhGJ8Zh0qKRHae9C8FAVjTf7LnBBcHFuuzi3XVza7giyJ3yZGk7_oItJ_rb44_4A7LSEoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726190081</pqid></control><display><type>article</type><title>Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhan, Lingling ; Li, Shuixing ; Li, Yaokai ; Sun, Rui ; Min, Jie ; Chen, Yiyao ; Fang, Jin ; Ma, Chang‐Qi ; Zhou, Guanqing ; Zhu, Haiming ; Zuo, Lijian ; Qiu, Huayu ; Yin, Shouchun ; Chen, Hongzheng</creator><creatorcontrib>Zhan, Lingling ; Li, Shuixing ; Li, Yaokai ; Sun, Rui ; Min, Jie ; Chen, Yiyao ; Fang, Jin ; Ma, Chang‐Qi ; Zhou, Guanqing ; Zhu, Haiming ; Zuo, Lijian ; Qiu, Huayu ; Yin, Shouchun ; Chen, Hongzheng</creatorcontrib><description>Balancing and improving the open‐circuit voltage (Voc) and short‐circuit current density (Jsc) synergistically has always been the critical point for organic photovoltaics (OPVs) to achieve high efficiencies. Here, this work adopts a ternary strategy to regulate the trade‐off between Voc and Jsc by combining the symmetric‐asymmetric non‐fullerene acceptors that differ at terminals and alkyl side chains to build the ternary OPV (TOPV). It is noticed that the reduced energy disorder and the enhanced luminescence efficiency of TOPV enable a mitigated energy loss and a higher Voc. Meanwhile, the third component, which is distributed at the host donor–acceptor interface, acts as the charge transport channel. The prolonged exciton lifetime, the boosted charge mobility, and the depressed charge recombination promote the TOPV to obtain an improved Jsc. Finally, with synergistically improved Voc and Jsc, the TOPV delivers an optimal efficiency of 19.26% (certified as 19.12%), representing one of the highest values reported so far.
Intermediary electron acceptor channels are constructed for manipulating charge transfer and transport, via combing two non‐fullerene acceptors with less miscibility, which synergistically improves Voc and Jsc, and enables ternary organic photovoltaic to exhibit a high efficiency of 19.3%.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202201076</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Charge transfer ; charge transfer state ; Charge transport ; Circuits ; Critical point ; Efficiency ; energy loss ; Excitons ; high efficiency ; intermediary electron acceptor ; Photovoltaic cells ; ternary organic photovoltaics ; Transport buildings, stations and terminals</subject><ispartof>Advanced energy materials, 2022-10, Vol.12 (39), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-4c394c7747025c4d1be164ddf2ceb301e5e97c4951da351e4e575e7e9fd654de3</citedby><cites>FETCH-LOGICAL-c3176-4c394c7747025c4d1be164ddf2ceb301e5e97c4951da351e4e575e7e9fd654de3</cites><orcidid>0000-0003-2684-8475 ; 0000-0003-1086-1755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202201076$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202201076$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Zhan, Lingling</creatorcontrib><creatorcontrib>Li, Shuixing</creatorcontrib><creatorcontrib>Li, Yaokai</creatorcontrib><creatorcontrib>Sun, Rui</creatorcontrib><creatorcontrib>Min, Jie</creatorcontrib><creatorcontrib>Chen, Yiyao</creatorcontrib><creatorcontrib>Fang, Jin</creatorcontrib><creatorcontrib>Ma, Chang‐Qi</creatorcontrib><creatorcontrib>Zhou, Guanqing</creatorcontrib><creatorcontrib>Zhu, Haiming</creatorcontrib><creatorcontrib>Zuo, Lijian</creatorcontrib><creatorcontrib>Qiu, Huayu</creatorcontrib><creatorcontrib>Yin, Shouchun</creatorcontrib><creatorcontrib>Chen, Hongzheng</creatorcontrib><title>Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics</title><title>Advanced energy materials</title><description>Balancing and improving the open‐circuit voltage (Voc) and short‐circuit current density (Jsc) synergistically has always been the critical point for organic photovoltaics (OPVs) to achieve high efficiencies. Here, this work adopts a ternary strategy to regulate the trade‐off between Voc and Jsc by combining the symmetric‐asymmetric non‐fullerene acceptors that differ at terminals and alkyl side chains to build the ternary OPV (TOPV). It is noticed that the reduced energy disorder and the enhanced luminescence efficiency of TOPV enable a mitigated energy loss and a higher Voc. Meanwhile, the third component, which is distributed at the host donor–acceptor interface, acts as the charge transport channel. The prolonged exciton lifetime, the boosted charge mobility, and the depressed charge recombination promote the TOPV to obtain an improved Jsc. Finally, with synergistically improved Voc and Jsc, the TOPV delivers an optimal efficiency of 19.26% (certified as 19.12%), representing one of the highest values reported so far.
Intermediary electron acceptor channels are constructed for manipulating charge transfer and transport, via combing two non‐fullerene acceptors with less miscibility, which synergistically improves Voc and Jsc, and enables ternary organic photovoltaic to exhibit a high efficiency of 19.3%.</description><subject>Charge transfer</subject><subject>charge transfer state</subject><subject>Charge transport</subject><subject>Circuits</subject><subject>Critical point</subject><subject>Efficiency</subject><subject>energy loss</subject><subject>Excitons</subject><subject>high efficiency</subject><subject>intermediary electron acceptor</subject><subject>Photovoltaic cells</subject><subject>ternary organic photovoltaics</subject><subject>Transport buildings, stations and terminals</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUE1PwkAQbYwmEuTqeRPjsXW_2mWPhFQlAfGA52bZTmFJ2a27BcMP8H9bUoNH5zIzyfvIe1F0T3BCMKZPCuw-oZhSTLDIrqIByQiPszHH15eb0dtoFMIOd8MlwYwNou-FsqY51Ko1doOmW-U3gFZe2VCBR8qW_dM436KjUWhmW_B7KI3yJ5TXoFvvLJpoDU3r_FnAWqgDyq1a1xAQkQl7RHlVGW3A6hNa-k3nqNH71rXu6OpWGR3uoptK1QFGv3sYfTznq-lrPF--zKaTeawZEVnMNZNcC8EFpqnmJVkDyXhZVlTDmmECKUihuUxJqVhKgEMqUhAgqzJLeQlsGD30uo13nwcIbbFzB287y4IKmhGJ8Zh0qKRHae9C8FAVjTf7LnBBcHFuuzi3XVza7giyJ3yZGk7_oItJ_rb44_4A7LSEoQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zhan, Lingling</creator><creator>Li, Shuixing</creator><creator>Li, Yaokai</creator><creator>Sun, Rui</creator><creator>Min, Jie</creator><creator>Chen, Yiyao</creator><creator>Fang, Jin</creator><creator>Ma, Chang‐Qi</creator><creator>Zhou, Guanqing</creator><creator>Zhu, Haiming</creator><creator>Zuo, Lijian</creator><creator>Qiu, Huayu</creator><creator>Yin, Shouchun</creator><creator>Chen, Hongzheng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2684-8475</orcidid><orcidid>https://orcid.org/0000-0003-1086-1755</orcidid></search><sort><creationdate>20221001</creationdate><title>Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics</title><author>Zhan, Lingling ; Li, Shuixing ; Li, Yaokai ; Sun, Rui ; Min, Jie ; Chen, Yiyao ; Fang, Jin ; Ma, Chang‐Qi ; Zhou, Guanqing ; Zhu, Haiming ; Zuo, Lijian ; Qiu, Huayu ; Yin, Shouchun ; Chen, Hongzheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-4c394c7747025c4d1be164ddf2ceb301e5e97c4951da351e4e575e7e9fd654de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Charge transfer</topic><topic>charge transfer state</topic><topic>Charge transport</topic><topic>Circuits</topic><topic>Critical point</topic><topic>Efficiency</topic><topic>energy loss</topic><topic>Excitons</topic><topic>high efficiency</topic><topic>intermediary electron acceptor</topic><topic>Photovoltaic cells</topic><topic>ternary organic photovoltaics</topic><topic>Transport buildings, stations and terminals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Lingling</creatorcontrib><creatorcontrib>Li, Shuixing</creatorcontrib><creatorcontrib>Li, Yaokai</creatorcontrib><creatorcontrib>Sun, Rui</creatorcontrib><creatorcontrib>Min, Jie</creatorcontrib><creatorcontrib>Chen, Yiyao</creatorcontrib><creatorcontrib>Fang, Jin</creatorcontrib><creatorcontrib>Ma, Chang‐Qi</creatorcontrib><creatorcontrib>Zhou, Guanqing</creatorcontrib><creatorcontrib>Zhu, Haiming</creatorcontrib><creatorcontrib>Zuo, Lijian</creatorcontrib><creatorcontrib>Qiu, Huayu</creatorcontrib><creatorcontrib>Yin, Shouchun</creatorcontrib><creatorcontrib>Chen, Hongzheng</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Lingling</au><au>Li, Shuixing</au><au>Li, Yaokai</au><au>Sun, Rui</au><au>Min, Jie</au><au>Chen, Yiyao</au><au>Fang, Jin</au><au>Ma, Chang‐Qi</au><au>Zhou, Guanqing</au><au>Zhu, Haiming</au><au>Zuo, Lijian</au><au>Qiu, Huayu</au><au>Yin, Shouchun</au><au>Chen, Hongzheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics</atitle><jtitle>Advanced energy materials</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>12</volume><issue>39</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Balancing and improving the open‐circuit voltage (Voc) and short‐circuit current density (Jsc) synergistically has always been the critical point for organic photovoltaics (OPVs) to achieve high efficiencies. Here, this work adopts a ternary strategy to regulate the trade‐off between Voc and Jsc by combining the symmetric‐asymmetric non‐fullerene acceptors that differ at terminals and alkyl side chains to build the ternary OPV (TOPV). It is noticed that the reduced energy disorder and the enhanced luminescence efficiency of TOPV enable a mitigated energy loss and a higher Voc. Meanwhile, the third component, which is distributed at the host donor–acceptor interface, acts as the charge transport channel. The prolonged exciton lifetime, the boosted charge mobility, and the depressed charge recombination promote the TOPV to obtain an improved Jsc. Finally, with synergistically improved Voc and Jsc, the TOPV delivers an optimal efficiency of 19.26% (certified as 19.12%), representing one of the highest values reported so far.
Intermediary electron acceptor channels are constructed for manipulating charge transfer and transport, via combing two non‐fullerene acceptors with less miscibility, which synergistically improves Voc and Jsc, and enables ternary organic photovoltaic to exhibit a high efficiency of 19.3%.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202201076</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2684-8475</orcidid><orcidid>https://orcid.org/0000-0003-1086-1755</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2022-10, Vol.12 (39), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2726190081 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Charge transfer charge transfer state Charge transport Circuits Critical point Efficiency energy loss Excitons high efficiency intermediary electron acceptor Photovoltaic cells ternary organic photovoltaics Transport buildings, stations and terminals |
title | Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulating%20Charge%20Transfer%20and%20Transport%20via%20Intermediary%20Electron%20Acceptor%20Channels%20Enables%2019.3%25%20Efficiency%20Organic%20Photovoltaics&rft.jtitle=Advanced%20energy%20materials&rft.au=Zhan,%20Lingling&rft.date=2022-10-01&rft.volume=12&rft.issue=39&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202201076&rft_dat=%3Cproquest_cross%3E2726190081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726190081&rft_id=info:pmid/&rfr_iscdi=true |