Electrochemical Generation of Catalytically Active Edge Sites in C2N‐Type Carbon Materials for Artificial Nitrogen Fixation
The electrochemical nitrogen reduction reaction (NRR) to ammonia (NH3) is a potentially carbon‐neutral and decentralized supplement to the established Haber–Bosch process. Catalytic activation of the highly stable dinitrogen molecules remains a great challenge. Especially metal‐free nitrogen‐doped c...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-10, Vol.18 (42), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 42 |
container_start_page | |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 18 |
creator | Zhang, Wuyong Zhan, Shaoqi Qin, Qing Heil, Tobias Liu, Xiyu Hwang, Jinyeon Ferber, Thimo H. Hofmann, Jan P. Oschatz, Martin |
description | The electrochemical nitrogen reduction reaction (NRR) to ammonia (NH3) is a potentially carbon‐neutral and decentralized supplement to the established Haber–Bosch process. Catalytic activation of the highly stable dinitrogen molecules remains a great challenge. Especially metal‐free nitrogen‐doped carbon catalysts do not often reach the desired selectivity and ammonia production rates due to their low concentration of NRR active sites and possible instability of heteroatoms under electrochemical potential, which can even contribute to false positive results. In this context, the electrochemical activation of nitrogen‐doped carbon electrocatalysts is an attractive, but not yet established method to create NRR catalytic sites. Herein, a metal‐free C2N material (HAT‐700) is electrochemically etched prior to application in NRR to form active edge‐sites originating from the removal of terminal nitrile groups. Resulting activated metal‐free HAT‐700‐A shows remarkable catalytic activity in electrochemical nitrogen fixation with a maximum Faradaic efficiency of 11.4% and NH3 yield of 5.86 µg mg−1cat h−1. Experimental results and theoretical calculations are combined, and it is proposed that carbon radicals formed during activation together with adjacent pyridinic nitrogen atoms play a crucial role in nitrogen adsorption and activation. The results demonstrate the possibility to create catalytically active sites on purpose by etching labile functional groups prior to NRR.
An electrochemical activation scheme for the generation of electrocatalytically active sites in C2N materials is reported and electrochemical conversion of dinitrogen to ammonia is used as a model reaction. Etching of terminal nitrile groups leads to the formation of unsaturated edge sites. It is proposed that the formed carbon radicals together with adjacent pyridinic nitrogen atoms are responsible for dinitrogen activation. |
doi_str_mv | 10.1002/smll.202204116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2726184702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726184702</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2736-aad4f5e9de4ad19d4f73d2bb82d2d87a459fa5448ce96511a4880ff5cf1dbe233</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqVw5WyJc4rtOH_HqmoLUloOLWfLSdbFlZsExwVyQOIReEaeBJeinnZH8-2ONAjdUjKihLD7bmfMiBHGCKc0PkMDGtMwiFOWnZ92Si7RVddtCQkp48kAfU4NlM425QvsdCkNnkMNVjrd1LhReCKdNL07OKbH49LpN8DTagN4pR10WNd4wpY_X9_rvgVP28LfLaQDq6XpsGosHlunlS69xkvtkzZQ45n--Iu4RhfKc3DzP4foeTZdTx6C_Gn-OBnnQcuSMA6krLiKIKuAy4pmXiRhxYoiZRWr0kTyKFMy4jwtIYsjSiVPU6JUVCpaFcDCcIjujn9b27zuoXNi2-xt7SMFS1hMU54Q5qnsSL1rA71ord5J2wtKxKFfcehXnPoVq0Wen1T4C_cedCo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726184702</pqid></control><display><type>article</type><title>Electrochemical Generation of Catalytically Active Edge Sites in C2N‐Type Carbon Materials for Artificial Nitrogen Fixation</title><source>Access via Wiley Online Library</source><creator>Zhang, Wuyong ; Zhan, Shaoqi ; Qin, Qing ; Heil, Tobias ; Liu, Xiyu ; Hwang, Jinyeon ; Ferber, Thimo H. ; Hofmann, Jan P. ; Oschatz, Martin</creator><creatorcontrib>Zhang, Wuyong ; Zhan, Shaoqi ; Qin, Qing ; Heil, Tobias ; Liu, Xiyu ; Hwang, Jinyeon ; Ferber, Thimo H. ; Hofmann, Jan P. ; Oschatz, Martin</creatorcontrib><description>The electrochemical nitrogen reduction reaction (NRR) to ammonia (NH3) is a potentially carbon‐neutral and decentralized supplement to the established Haber–Bosch process. Catalytic activation of the highly stable dinitrogen molecules remains a great challenge. Especially metal‐free nitrogen‐doped carbon catalysts do not often reach the desired selectivity and ammonia production rates due to their low concentration of NRR active sites and possible instability of heteroatoms under electrochemical potential, which can even contribute to false positive results. In this context, the electrochemical activation of nitrogen‐doped carbon electrocatalysts is an attractive, but not yet established method to create NRR catalytic sites. Herein, a metal‐free C2N material (HAT‐700) is electrochemically etched prior to application in NRR to form active edge‐sites originating from the removal of terminal nitrile groups. Resulting activated metal‐free HAT‐700‐A shows remarkable catalytic activity in electrochemical nitrogen fixation with a maximum Faradaic efficiency of 11.4% and NH3 yield of 5.86 µg mg−1cat h−1. Experimental results and theoretical calculations are combined, and it is proposed that carbon radicals formed during activation together with adjacent pyridinic nitrogen atoms play a crucial role in nitrogen adsorption and activation. The results demonstrate the possibility to create catalytically active sites on purpose by etching labile functional groups prior to NRR.
An electrochemical activation scheme for the generation of electrocatalytically active sites in C2N materials is reported and electrochemical conversion of dinitrogen to ammonia is used as a model reaction. Etching of terminal nitrile groups leads to the formation of unsaturated edge sites. It is proposed that the formed carbon radicals together with adjacent pyridinic nitrogen atoms are responsible for dinitrogen activation.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202204116</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>activation ; Ammonia ; Carbon ; Catalytic activity ; Chemical reduction ; electrocatalysis ; Electrocatalysts ; Electrochemical activation ; Electrochemical potential ; Functional groups ; Haber Bosch process ; Nanotechnology ; Nitrogen ; Nitrogen atoms ; nitrogen fixation ; Nitrogenation ; nitrogen‐doped carbon ; Selectivity</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-10, Vol.18 (42), p.n/a</ispartof><rights>2022 The Authors. Small published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2377-1214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202204116$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202204116$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhang, Wuyong</creatorcontrib><creatorcontrib>Zhan, Shaoqi</creatorcontrib><creatorcontrib>Qin, Qing</creatorcontrib><creatorcontrib>Heil, Tobias</creatorcontrib><creatorcontrib>Liu, Xiyu</creatorcontrib><creatorcontrib>Hwang, Jinyeon</creatorcontrib><creatorcontrib>Ferber, Thimo H.</creatorcontrib><creatorcontrib>Hofmann, Jan P.</creatorcontrib><creatorcontrib>Oschatz, Martin</creatorcontrib><title>Electrochemical Generation of Catalytically Active Edge Sites in C2N‐Type Carbon Materials for Artificial Nitrogen Fixation</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>The electrochemical nitrogen reduction reaction (NRR) to ammonia (NH3) is a potentially carbon‐neutral and decentralized supplement to the established Haber–Bosch process. Catalytic activation of the highly stable dinitrogen molecules remains a great challenge. Especially metal‐free nitrogen‐doped carbon catalysts do not often reach the desired selectivity and ammonia production rates due to their low concentration of NRR active sites and possible instability of heteroatoms under electrochemical potential, which can even contribute to false positive results. In this context, the electrochemical activation of nitrogen‐doped carbon electrocatalysts is an attractive, but not yet established method to create NRR catalytic sites. Herein, a metal‐free C2N material (HAT‐700) is electrochemically etched prior to application in NRR to form active edge‐sites originating from the removal of terminal nitrile groups. Resulting activated metal‐free HAT‐700‐A shows remarkable catalytic activity in electrochemical nitrogen fixation with a maximum Faradaic efficiency of 11.4% and NH3 yield of 5.86 µg mg−1cat h−1. Experimental results and theoretical calculations are combined, and it is proposed that carbon radicals formed during activation together with adjacent pyridinic nitrogen atoms play a crucial role in nitrogen adsorption and activation. The results demonstrate the possibility to create catalytically active sites on purpose by etching labile functional groups prior to NRR.
An electrochemical activation scheme for the generation of electrocatalytically active sites in C2N materials is reported and electrochemical conversion of dinitrogen to ammonia is used as a model reaction. Etching of terminal nitrile groups leads to the formation of unsaturated edge sites. It is proposed that the formed carbon radicals together with adjacent pyridinic nitrogen atoms are responsible for dinitrogen activation.</description><subject>activation</subject><subject>Ammonia</subject><subject>Carbon</subject><subject>Catalytic activity</subject><subject>Chemical reduction</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrochemical activation</subject><subject>Electrochemical potential</subject><subject>Functional groups</subject><subject>Haber Bosch process</subject><subject>Nanotechnology</subject><subject>Nitrogen</subject><subject>Nitrogen atoms</subject><subject>nitrogen fixation</subject><subject>Nitrogenation</subject><subject>nitrogen‐doped carbon</subject><subject>Selectivity</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNo9kM1OwzAQhC0EEqVw5WyJc4rtOH_HqmoLUloOLWfLSdbFlZsExwVyQOIReEaeBJeinnZH8-2ONAjdUjKihLD7bmfMiBHGCKc0PkMDGtMwiFOWnZ92Si7RVddtCQkp48kAfU4NlM425QvsdCkNnkMNVjrd1LhReCKdNL07OKbH49LpN8DTagN4pR10WNd4wpY_X9_rvgVP28LfLaQDq6XpsGosHlunlS69xkvtkzZQ45n--Iu4RhfKc3DzP4foeTZdTx6C_Gn-OBnnQcuSMA6krLiKIKuAy4pmXiRhxYoiZRWr0kTyKFMy4jwtIYsjSiVPU6JUVCpaFcDCcIjujn9b27zuoXNi2-xt7SMFS1hMU54Q5qnsSL1rA71ord5J2wtKxKFfcehXnPoVq0Wen1T4C_cedCo</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zhang, Wuyong</creator><creator>Zhan, Shaoqi</creator><creator>Qin, Qing</creator><creator>Heil, Tobias</creator><creator>Liu, Xiyu</creator><creator>Hwang, Jinyeon</creator><creator>Ferber, Thimo H.</creator><creator>Hofmann, Jan P.</creator><creator>Oschatz, Martin</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2377-1214</orcidid></search><sort><creationdate>20221001</creationdate><title>Electrochemical Generation of Catalytically Active Edge Sites in C2N‐Type Carbon Materials for Artificial Nitrogen Fixation</title><author>Zhang, Wuyong ; Zhan, Shaoqi ; Qin, Qing ; Heil, Tobias ; Liu, Xiyu ; Hwang, Jinyeon ; Ferber, Thimo H. ; Hofmann, Jan P. ; Oschatz, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2736-aad4f5e9de4ad19d4f73d2bb82d2d87a459fa5448ce96511a4880ff5cf1dbe233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>activation</topic><topic>Ammonia</topic><topic>Carbon</topic><topic>Catalytic activity</topic><topic>Chemical reduction</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrochemical activation</topic><topic>Electrochemical potential</topic><topic>Functional groups</topic><topic>Haber Bosch process</topic><topic>Nanotechnology</topic><topic>Nitrogen</topic><topic>Nitrogen atoms</topic><topic>nitrogen fixation</topic><topic>Nitrogenation</topic><topic>nitrogen‐doped carbon</topic><topic>Selectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wuyong</creatorcontrib><creatorcontrib>Zhan, Shaoqi</creatorcontrib><creatorcontrib>Qin, Qing</creatorcontrib><creatorcontrib>Heil, Tobias</creatorcontrib><creatorcontrib>Liu, Xiyu</creatorcontrib><creatorcontrib>Hwang, Jinyeon</creatorcontrib><creatorcontrib>Ferber, Thimo H.</creatorcontrib><creatorcontrib>Hofmann, Jan P.</creatorcontrib><creatorcontrib>Oschatz, Martin</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wuyong</au><au>Zhan, Shaoqi</au><au>Qin, Qing</au><au>Heil, Tobias</au><au>Liu, Xiyu</au><au>Hwang, Jinyeon</au><au>Ferber, Thimo H.</au><au>Hofmann, Jan P.</au><au>Oschatz, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Generation of Catalytically Active Edge Sites in C2N‐Type Carbon Materials for Artificial Nitrogen Fixation</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>18</volume><issue>42</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The electrochemical nitrogen reduction reaction (NRR) to ammonia (NH3) is a potentially carbon‐neutral and decentralized supplement to the established Haber–Bosch process. Catalytic activation of the highly stable dinitrogen molecules remains a great challenge. Especially metal‐free nitrogen‐doped carbon catalysts do not often reach the desired selectivity and ammonia production rates due to their low concentration of NRR active sites and possible instability of heteroatoms under electrochemical potential, which can even contribute to false positive results. In this context, the electrochemical activation of nitrogen‐doped carbon electrocatalysts is an attractive, but not yet established method to create NRR catalytic sites. Herein, a metal‐free C2N material (HAT‐700) is electrochemically etched prior to application in NRR to form active edge‐sites originating from the removal of terminal nitrile groups. Resulting activated metal‐free HAT‐700‐A shows remarkable catalytic activity in electrochemical nitrogen fixation with a maximum Faradaic efficiency of 11.4% and NH3 yield of 5.86 µg mg−1cat h−1. Experimental results and theoretical calculations are combined, and it is proposed that carbon radicals formed during activation together with adjacent pyridinic nitrogen atoms play a crucial role in nitrogen adsorption and activation. The results demonstrate the possibility to create catalytically active sites on purpose by etching labile functional groups prior to NRR.
An electrochemical activation scheme for the generation of electrocatalytically active sites in C2N materials is reported and electrochemical conversion of dinitrogen to ammonia is used as a model reaction. Etching of terminal nitrile groups leads to the formation of unsaturated edge sites. It is proposed that the formed carbon radicals together with adjacent pyridinic nitrogen atoms are responsible for dinitrogen activation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202204116</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2377-1214</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2022-10, Vol.18 (42), p.n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_journals_2726184702 |
source | Access via Wiley Online Library |
subjects | activation Ammonia Carbon Catalytic activity Chemical reduction electrocatalysis Electrocatalysts Electrochemical activation Electrochemical potential Functional groups Haber Bosch process Nanotechnology Nitrogen Nitrogen atoms nitrogen fixation Nitrogenation nitrogen‐doped carbon Selectivity |
title | Electrochemical Generation of Catalytically Active Edge Sites in C2N‐Type Carbon Materials for Artificial Nitrogen Fixation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Generation%20of%20Catalytically%20Active%20Edge%20Sites%20in%20C2N%E2%80%90Type%20Carbon%20Materials%20for%20Artificial%20Nitrogen%20Fixation&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhang,%20Wuyong&rft.date=2022-10-01&rft.volume=18&rft.issue=42&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202204116&rft_dat=%3Cproquest_wiley%3E2726184702%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726184702&rft_id=info:pmid/&rfr_iscdi=true |