Modulated Kondo screening along magnetic mirror twin boundaries in monolayer MoS2 on graphene

A many-body resonance emerges at the Fermi energy when an electron bath screens the magnetic moment of a half-filled impurity level. This Kondo effect, originally introduced to explain the abnormal resistivity behavior in bulk magnetic alloys, has been realized in many quantum systems over the past...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: Camiel van Efferen, Fischer, Jeison, Costi, Theo A, Rosch, Achim, Michely, Thomas, Jolie, Wouter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Camiel van Efferen
Fischer, Jeison
Costi, Theo A
Rosch, Achim
Michely, Thomas
Jolie, Wouter
description A many-body resonance emerges at the Fermi energy when an electron bath screens the magnetic moment of a half-filled impurity level. This Kondo effect, originally introduced to explain the abnormal resistivity behavior in bulk magnetic alloys, has been realized in many quantum systems over the past decades, such as quantum dots, quantum point contacts, nanowires, single-molecule transistors, heavy-fermion lattices, down to adsorbed single atoms. Here we describe a unique Kondo system which allows us to experimentally resolve the spectral function consisting of impurity levels and Kondo resonance in a large Kondo temperature range, as well as their spatial modulation. Our experimental Kondo system, based on a discrete half-filled quantum confined state within a MoS2 grain boundary, in conjunction with numerical renormalization group calculations, enables us to test the predictive power of the Anderson model which is the basis of the microscopic understanding of Kondo physics.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2726165352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726165352</sourcerecordid><originalsourceid>FETCH-proquest_journals_27261653523</originalsourceid><addsrcrecordid>eNqNisEKglAQRR9BUJT_MNA6sHmp7aMIwlVtQ1462QudqXlK9Pe56APa3MPh3JGZorWr5WaNODFRCI84jjHNMEns1FxyqfrGdVTBUbgSCKUSsecaXCPDtq5m6nwJrVcVhe7tGa7Sc-XUU4DBWmFp3IcUcjkhCEOt7nknprkZ31wTKPpxZhb73Xl7WD5VXj2FrnhIrzykAjNMV2liE7T_vb47DUP_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726165352</pqid></control><display><type>article</type><title>Modulated Kondo screening along magnetic mirror twin boundaries in monolayer MoS2 on graphene</title><source>Free E- Journals</source><creator>Camiel van Efferen ; Fischer, Jeison ; Costi, Theo A ; Rosch, Achim ; Michely, Thomas ; Jolie, Wouter</creator><creatorcontrib>Camiel van Efferen ; Fischer, Jeison ; Costi, Theo A ; Rosch, Achim ; Michely, Thomas ; Jolie, Wouter</creatorcontrib><description>A many-body resonance emerges at the Fermi energy when an electron bath screens the magnetic moment of a half-filled impurity level. This Kondo effect, originally introduced to explain the abnormal resistivity behavior in bulk magnetic alloys, has been realized in many quantum systems over the past decades, such as quantum dots, quantum point contacts, nanowires, single-molecule transistors, heavy-fermion lattices, down to adsorbed single atoms. Here we describe a unique Kondo system which allows us to experimentally resolve the spectral function consisting of impurity levels and Kondo resonance in a large Kondo temperature range, as well as their spatial modulation. Our experimental Kondo system, based on a discrete half-filled quantum confined state within a MoS2 grain boundary, in conjunction with numerical renormalization group calculations, enables us to test the predictive power of the Anderson model which is the basis of the microscopic understanding of Kondo physics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Energy levels ; Fermions ; Grain boundaries ; Graphene ; Impurities ; Kondo effect ; Lattices ; Low temperature ; Magnetic alloys ; Magnetic mirrors ; Magnetic moments ; Molybdenum disulfide ; Nanowires ; Quantum dots ; Transistors ; Twin boundaries ; Wave functions</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Camiel van Efferen</creatorcontrib><creatorcontrib>Fischer, Jeison</creatorcontrib><creatorcontrib>Costi, Theo A</creatorcontrib><creatorcontrib>Rosch, Achim</creatorcontrib><creatorcontrib>Michely, Thomas</creatorcontrib><creatorcontrib>Jolie, Wouter</creatorcontrib><title>Modulated Kondo screening along magnetic mirror twin boundaries in monolayer MoS2 on graphene</title><title>arXiv.org</title><description>A many-body resonance emerges at the Fermi energy when an electron bath screens the magnetic moment of a half-filled impurity level. This Kondo effect, originally introduced to explain the abnormal resistivity behavior in bulk magnetic alloys, has been realized in many quantum systems over the past decades, such as quantum dots, quantum point contacts, nanowires, single-molecule transistors, heavy-fermion lattices, down to adsorbed single atoms. Here we describe a unique Kondo system which allows us to experimentally resolve the spectral function consisting of impurity levels and Kondo resonance in a large Kondo temperature range, as well as their spatial modulation. Our experimental Kondo system, based on a discrete half-filled quantum confined state within a MoS2 grain boundary, in conjunction with numerical renormalization group calculations, enables us to test the predictive power of the Anderson model which is the basis of the microscopic understanding of Kondo physics.</description><subject>Energy levels</subject><subject>Fermions</subject><subject>Grain boundaries</subject><subject>Graphene</subject><subject>Impurities</subject><subject>Kondo effect</subject><subject>Lattices</subject><subject>Low temperature</subject><subject>Magnetic alloys</subject><subject>Magnetic mirrors</subject><subject>Magnetic moments</subject><subject>Molybdenum disulfide</subject><subject>Nanowires</subject><subject>Quantum dots</subject><subject>Transistors</subject><subject>Twin boundaries</subject><subject>Wave functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNisEKglAQRR9BUJT_MNA6sHmp7aMIwlVtQ1462QudqXlK9Pe56APa3MPh3JGZorWr5WaNODFRCI84jjHNMEns1FxyqfrGdVTBUbgSCKUSsecaXCPDtq5m6nwJrVcVhe7tGa7Sc-XUU4DBWmFp3IcUcjkhCEOt7nknprkZ31wTKPpxZhb73Xl7WD5VXj2FrnhIrzykAjNMV2liE7T_vb47DUP_</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>Camiel van Efferen</creator><creator>Fischer, Jeison</creator><creator>Costi, Theo A</creator><creator>Rosch, Achim</creator><creator>Michely, Thomas</creator><creator>Jolie, Wouter</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230508</creationdate><title>Modulated Kondo screening along magnetic mirror twin boundaries in monolayer MoS2 on graphene</title><author>Camiel van Efferen ; Fischer, Jeison ; Costi, Theo A ; Rosch, Achim ; Michely, Thomas ; Jolie, Wouter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27261653523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy levels</topic><topic>Fermions</topic><topic>Grain boundaries</topic><topic>Graphene</topic><topic>Impurities</topic><topic>Kondo effect</topic><topic>Lattices</topic><topic>Low temperature</topic><topic>Magnetic alloys</topic><topic>Magnetic mirrors</topic><topic>Magnetic moments</topic><topic>Molybdenum disulfide</topic><topic>Nanowires</topic><topic>Quantum dots</topic><topic>Transistors</topic><topic>Twin boundaries</topic><topic>Wave functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Camiel van Efferen</creatorcontrib><creatorcontrib>Fischer, Jeison</creatorcontrib><creatorcontrib>Costi, Theo A</creatorcontrib><creatorcontrib>Rosch, Achim</creatorcontrib><creatorcontrib>Michely, Thomas</creatorcontrib><creatorcontrib>Jolie, Wouter</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camiel van Efferen</au><au>Fischer, Jeison</au><au>Costi, Theo A</au><au>Rosch, Achim</au><au>Michely, Thomas</au><au>Jolie, Wouter</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Modulated Kondo screening along magnetic mirror twin boundaries in monolayer MoS2 on graphene</atitle><jtitle>arXiv.org</jtitle><date>2023-05-08</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>A many-body resonance emerges at the Fermi energy when an electron bath screens the magnetic moment of a half-filled impurity level. This Kondo effect, originally introduced to explain the abnormal resistivity behavior in bulk magnetic alloys, has been realized in many quantum systems over the past decades, such as quantum dots, quantum point contacts, nanowires, single-molecule transistors, heavy-fermion lattices, down to adsorbed single atoms. Here we describe a unique Kondo system which allows us to experimentally resolve the spectral function consisting of impurity levels and Kondo resonance in a large Kondo temperature range, as well as their spatial modulation. Our experimental Kondo system, based on a discrete half-filled quantum confined state within a MoS2 grain boundary, in conjunction with numerical renormalization group calculations, enables us to test the predictive power of the Anderson model which is the basis of the microscopic understanding of Kondo physics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2726165352
source Free E- Journals
subjects Energy levels
Fermions
Grain boundaries
Graphene
Impurities
Kondo effect
Lattices
Low temperature
Magnetic alloys
Magnetic mirrors
Magnetic moments
Molybdenum disulfide
Nanowires
Quantum dots
Transistors
Twin boundaries
Wave functions
title Modulated Kondo screening along magnetic mirror twin boundaries in monolayer MoS2 on graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Modulated%20Kondo%20screening%20along%20magnetic%20mirror%20twin%20boundaries%20in%20monolayer%20MoS2%20on%20graphene&rft.jtitle=arXiv.org&rft.au=Camiel%20van%20Efferen&rft.date=2023-05-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2726165352%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726165352&rft_id=info:pmid/&rfr_iscdi=true