Global weak solutions in nonlinear 3D thermoelasticity
Here we study a nonlinear thermoelasticity hyperbolic-parabolic system describing the balance of momentum and internal energy of a heat-conducting elastic body, preserving the positivity of temperature. So far, no global existence results in such a natural case were available. Our result is obtained...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cieślak, Tomasz Muha, Boris Trifunović, Srđan |
description | Here we study a nonlinear thermoelasticity hyperbolic-parabolic system describing the balance of momentum and internal energy of a heat-conducting elastic body, preserving the positivity of temperature. So far, no global existence results in such a natural case were available. Our result is obtained by using thermodynamically justified variables which allow us to obtain an equivalent system in which the internal energy balance is replaced with entropy balance. For this system, a concept of weak solution with defect measure is introduced, which satisfies entropy inequality instead of balance and has a positive temperature almost everywhere. Then, the global existence, consistency and weak-strong uniqueness are shown in the cases where heat capacity and heat conductivity are both either constant or non-constant. Let us point out that this is the first result concerning global existence for large initial data in nonlinear thermoelasticity where the model is in full accordance with the laws of thermodynamics. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2726161611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726161611</sourcerecordid><originalsourceid>FETCH-proquest_journals_27261616113</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6kLzY1L3fA7gvUSKmxjzNSxBvr4IHkFnMYmYkKtRaNcsF4kTUzIOUEk2HbasrYXaBjjbA09krMIWSPUUGHyFSDD46m0CvIV9cupELlrM_-fyaifHZBnb1z1Mx324Oq31zT_QojnM_UEnxk3rs0KgvSv93vQHhADWE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726161611</pqid></control><display><type>article</type><title>Global weak solutions in nonlinear 3D thermoelasticity</title><source>Free E- Journals</source><creator>Cieślak, Tomasz ; Muha, Boris ; Trifunović, Srđan</creator><creatorcontrib>Cieślak, Tomasz ; Muha, Boris ; Trifunović, Srđan</creatorcontrib><description>Here we study a nonlinear thermoelasticity hyperbolic-parabolic system describing the balance of momentum and internal energy of a heat-conducting elastic body, preserving the positivity of temperature. So far, no global existence results in such a natural case were available. Our result is obtained by using thermodynamically justified variables which allow us to obtain an equivalent system in which the internal energy balance is replaced with entropy balance. For this system, a concept of weak solution with defect measure is introduced, which satisfies entropy inequality instead of balance and has a positive temperature almost everywhere. Then, the global existence, consistency and weak-strong uniqueness are shown in the cases where heat capacity and heat conductivity are both either constant or non-constant. Let us point out that this is the first result concerning global existence for large initial data in nonlinear thermoelasticity where the model is in full accordance with the laws of thermodynamics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Elastic bodies ; Entropy ; Heat ; Heat transmission ; Internal energy ; Thermal conductivity ; Thermoelasticity</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Cieślak, Tomasz</creatorcontrib><creatorcontrib>Muha, Boris</creatorcontrib><creatorcontrib>Trifunović, Srđan</creatorcontrib><title>Global weak solutions in nonlinear 3D thermoelasticity</title><title>arXiv.org</title><description>Here we study a nonlinear thermoelasticity hyperbolic-parabolic system describing the balance of momentum and internal energy of a heat-conducting elastic body, preserving the positivity of temperature. So far, no global existence results in such a natural case were available. Our result is obtained by using thermodynamically justified variables which allow us to obtain an equivalent system in which the internal energy balance is replaced with entropy balance. For this system, a concept of weak solution with defect measure is introduced, which satisfies entropy inequality instead of balance and has a positive temperature almost everywhere. Then, the global existence, consistency and weak-strong uniqueness are shown in the cases where heat capacity and heat conductivity are both either constant or non-constant. Let us point out that this is the first result concerning global existence for large initial data in nonlinear thermoelasticity where the model is in full accordance with the laws of thermodynamics.</description><subject>Elastic bodies</subject><subject>Entropy</subject><subject>Heat</subject><subject>Heat transmission</subject><subject>Internal energy</subject><subject>Thermal conductivity</subject><subject>Thermoelasticity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6kLzY1L3fA7gvUSKmxjzNSxBvr4IHkFnMYmYkKtRaNcsF4kTUzIOUEk2HbasrYXaBjjbA09krMIWSPUUGHyFSDD46m0CvIV9cupELlrM_-fyaifHZBnb1z1Mx324Oq31zT_QojnM_UEnxk3rs0KgvSv93vQHhADWE</recordid><startdate>20231219</startdate><enddate>20231219</enddate><creator>Cieślak, Tomasz</creator><creator>Muha, Boris</creator><creator>Trifunović, Srđan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231219</creationdate><title>Global weak solutions in nonlinear 3D thermoelasticity</title><author>Cieślak, Tomasz ; Muha, Boris ; Trifunović, Srđan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27261616113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Elastic bodies</topic><topic>Entropy</topic><topic>Heat</topic><topic>Heat transmission</topic><topic>Internal energy</topic><topic>Thermal conductivity</topic><topic>Thermoelasticity</topic><toplevel>online_resources</toplevel><creatorcontrib>Cieślak, Tomasz</creatorcontrib><creatorcontrib>Muha, Boris</creatorcontrib><creatorcontrib>Trifunović, Srđan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cieślak, Tomasz</au><au>Muha, Boris</au><au>Trifunović, Srđan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Global weak solutions in nonlinear 3D thermoelasticity</atitle><jtitle>arXiv.org</jtitle><date>2023-12-19</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Here we study a nonlinear thermoelasticity hyperbolic-parabolic system describing the balance of momentum and internal energy of a heat-conducting elastic body, preserving the positivity of temperature. So far, no global existence results in such a natural case were available. Our result is obtained by using thermodynamically justified variables which allow us to obtain an equivalent system in which the internal energy balance is replaced with entropy balance. For this system, a concept of weak solution with defect measure is introduced, which satisfies entropy inequality instead of balance and has a positive temperature almost everywhere. Then, the global existence, consistency and weak-strong uniqueness are shown in the cases where heat capacity and heat conductivity are both either constant or non-constant. Let us point out that this is the first result concerning global existence for large initial data in nonlinear thermoelasticity where the model is in full accordance with the laws of thermodynamics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2726161611 |
source | Free E- Journals |
subjects | Elastic bodies Entropy Heat Heat transmission Internal energy Thermal conductivity Thermoelasticity |
title | Global weak solutions in nonlinear 3D thermoelasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Global%20weak%20solutions%20in%20nonlinear%203D%20thermoelasticity&rft.jtitle=arXiv.org&rft.au=Cie%C5%9Blak,%20Tomasz&rft.date=2023-12-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2726161611%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726161611&rft_id=info:pmid/&rfr_iscdi=true |