Riemann-Hilbert problem and multiple poles solution for an extended modified Korteweg-de Vries equation with zero/nonzero boundary conditions
The aim is to present the inverse scattering transform (IST) with Riemann-Hilbert problem (RHP) for a higher-order extended modified Korteweg-de Vries (emKdV) equation with zero/nonzero boundary conditions (Z/NZBC) at infinity, where the emKdV equation contains third- and fifth-order dispersion coef...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2022-10, Vol.110 (2), p.1723-1746 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1746 |
---|---|
container_issue | 2 |
container_start_page | 1723 |
container_title | Nonlinear dynamics |
container_volume | 110 |
creator | Xiao, Yu Zhu, Qiaozhen Wu, Xing |
description | The aim is to present the inverse scattering transform (IST) with Riemann-Hilbert problem (RHP) for a higher-order extended modified Korteweg-de Vries (emKdV) equation with zero/nonzero boundary conditions (Z/NZBC) at infinity, where the emKdV equation contains third- and fifth-order dispersion coefficients matching with relevant nonlinearity terms, respectively. Under reflectionless condition, the RHP of emKdV equation is firstly solved when scattering data have two cases: multiple simple poles and higher-order poles, and corresponding formulae of multiple simple poles soliton and higher-order poles solution are shown in terms of determinants, respectively. One simple soliton and two simple soliton solutions are obtained in detail according to variable values of third- and fifth-order dispersion coefficients, the effect power of which are specially displayed in dynamic structures. In addition, as a very important application for solving higher-order solutions by RHP, we extend Laurent’s series of residue conditions of idea to this higher-order emKdV equation. |
doi_str_mv | 10.1007/s11071-022-07671-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726153787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726153787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-48a76860a0bb4eac8adf5932b6e0916967b6946c5172f4ce130a7257a72929f23</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ2ibNUcQvFARR8RbSdqqRbrImLX78B_-zWVfw5iUzkOeZSV5C9jkccgB1lDgHxRkIwUDJ3FUbZMYrVTAh9eMmmYEWJQMNj9tkJ6UXACgE1DPydetwYb1nF25oMI50GUMz4IJa39HFNIxuOSBdhgETTWGYRhc87UPM9xTfR_QdZi50rne5uQpxxDd8Yh3Sh-iyg6-T_XHe3PhMPzGGIx_8qtImTL6z8YO2wXduBaVdstXbIeHeb52T-7PTu5MLdn1zfnlyfM3aguuRlbVVspZgoWlKtG1tu77ShWgkguZSS9VIXcq24kr0ZYu8AKtEpfKhhe5FMScH67n5t68TptG8hCn6vNIIJSSvClWrTIk11caQUsTeLKNb5BcbDmYVu1nHbnLs5id2U2WpWEspw_4J49_of6xvQ1WITg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726153787</pqid></control><display><type>article</type><title>Riemann-Hilbert problem and multiple poles solution for an extended modified Korteweg-de Vries equation with zero/nonzero boundary conditions</title><source>SpringerLink Journals</source><creator>Xiao, Yu ; Zhu, Qiaozhen ; Wu, Xing</creator><creatorcontrib>Xiao, Yu ; Zhu, Qiaozhen ; Wu, Xing</creatorcontrib><description>The aim is to present the inverse scattering transform (IST) with Riemann-Hilbert problem (RHP) for a higher-order extended modified Korteweg-de Vries (emKdV) equation with zero/nonzero boundary conditions (Z/NZBC) at infinity, where the emKdV equation contains third- and fifth-order dispersion coefficients matching with relevant nonlinearity terms, respectively. Under reflectionless condition, the RHP of emKdV equation is firstly solved when scattering data have two cases: multiple simple poles and higher-order poles, and corresponding formulae of multiple simple poles soliton and higher-order poles solution are shown in terms of determinants, respectively. One simple soliton and two simple soliton solutions are obtained in detail according to variable values of third- and fifth-order dispersion coefficients, the effect power of which are specially displayed in dynamic structures. In addition, as a very important application for solving higher-order solutions by RHP, we extend Laurent’s series of residue conditions of idea to this higher-order emKdV equation.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-022-07671-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Boundary conditions ; Classical Mechanics ; Control ; Dispersion ; Dynamical Systems ; Engineering ; Inverse scattering ; Korteweg-Devries equation ; Mechanical Engineering ; Original Paper ; Poles ; Solitary waves ; Vibration</subject><ispartof>Nonlinear dynamics, 2022-10, Vol.110 (2), p.1723-1746</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-48a76860a0bb4eac8adf5932b6e0916967b6946c5172f4ce130a7257a72929f23</citedby><cites>FETCH-LOGICAL-c319t-48a76860a0bb4eac8adf5932b6e0916967b6946c5172f4ce130a7257a72929f23</cites><orcidid>0000-0001-6338-4855</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-022-07671-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-022-07671-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Xiao, Yu</creatorcontrib><creatorcontrib>Zhu, Qiaozhen</creatorcontrib><creatorcontrib>Wu, Xing</creatorcontrib><title>Riemann-Hilbert problem and multiple poles solution for an extended modified Korteweg-de Vries equation with zero/nonzero boundary conditions</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>The aim is to present the inverse scattering transform (IST) with Riemann-Hilbert problem (RHP) for a higher-order extended modified Korteweg-de Vries (emKdV) equation with zero/nonzero boundary conditions (Z/NZBC) at infinity, where the emKdV equation contains third- and fifth-order dispersion coefficients matching with relevant nonlinearity terms, respectively. Under reflectionless condition, the RHP of emKdV equation is firstly solved when scattering data have two cases: multiple simple poles and higher-order poles, and corresponding formulae of multiple simple poles soliton and higher-order poles solution are shown in terms of determinants, respectively. One simple soliton and two simple soliton solutions are obtained in detail according to variable values of third- and fifth-order dispersion coefficients, the effect power of which are specially displayed in dynamic structures. In addition, as a very important application for solving higher-order solutions by RHP, we extend Laurent’s series of residue conditions of idea to this higher-order emKdV equation.</description><subject>Automotive Engineering</subject><subject>Boundary conditions</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dispersion</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Inverse scattering</subject><subject>Korteweg-Devries equation</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Poles</subject><subject>Solitary waves</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ2ibNUcQvFARR8RbSdqqRbrImLX78B_-zWVfw5iUzkOeZSV5C9jkccgB1lDgHxRkIwUDJ3FUbZMYrVTAh9eMmmYEWJQMNj9tkJ6UXACgE1DPydetwYb1nF25oMI50GUMz4IJa39HFNIxuOSBdhgETTWGYRhc87UPM9xTfR_QdZi50rne5uQpxxDd8Yh3Sh-iyg6-T_XHe3PhMPzGGIx_8qtImTL6z8YO2wXduBaVdstXbIeHeb52T-7PTu5MLdn1zfnlyfM3aguuRlbVVspZgoWlKtG1tu77ShWgkguZSS9VIXcq24kr0ZYu8AKtEpfKhhe5FMScH67n5t68TptG8hCn6vNIIJSSvClWrTIk11caQUsTeLKNb5BcbDmYVu1nHbnLs5id2U2WpWEspw_4J49_of6xvQ1WITg</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Xiao, Yu</creator><creator>Zhu, Qiaozhen</creator><creator>Wu, Xing</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6338-4855</orcidid></search><sort><creationdate>20221001</creationdate><title>Riemann-Hilbert problem and multiple poles solution for an extended modified Korteweg-de Vries equation with zero/nonzero boundary conditions</title><author>Xiao, Yu ; Zhu, Qiaozhen ; Wu, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-48a76860a0bb4eac8adf5932b6e0916967b6946c5172f4ce130a7257a72929f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automotive Engineering</topic><topic>Boundary conditions</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dispersion</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Inverse scattering</topic><topic>Korteweg-Devries equation</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Poles</topic><topic>Solitary waves</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Yu</creatorcontrib><creatorcontrib>Zhu, Qiaozhen</creatorcontrib><creatorcontrib>Wu, Xing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Yu</au><au>Zhu, Qiaozhen</au><au>Wu, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riemann-Hilbert problem and multiple poles solution for an extended modified Korteweg-de Vries equation with zero/nonzero boundary conditions</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>110</volume><issue>2</issue><spage>1723</spage><epage>1746</epage><pages>1723-1746</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>The aim is to present the inverse scattering transform (IST) with Riemann-Hilbert problem (RHP) for a higher-order extended modified Korteweg-de Vries (emKdV) equation with zero/nonzero boundary conditions (Z/NZBC) at infinity, where the emKdV equation contains third- and fifth-order dispersion coefficients matching with relevant nonlinearity terms, respectively. Under reflectionless condition, the RHP of emKdV equation is firstly solved when scattering data have two cases: multiple simple poles and higher-order poles, and corresponding formulae of multiple simple poles soliton and higher-order poles solution are shown in terms of determinants, respectively. One simple soliton and two simple soliton solutions are obtained in detail according to variable values of third- and fifth-order dispersion coefficients, the effect power of which are specially displayed in dynamic structures. In addition, as a very important application for solving higher-order solutions by RHP, we extend Laurent’s series of residue conditions of idea to this higher-order emKdV equation.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-022-07671-5</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-6338-4855</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2022-10, Vol.110 (2), p.1723-1746 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2726153787 |
source | SpringerLink Journals |
subjects | Automotive Engineering Boundary conditions Classical Mechanics Control Dispersion Dynamical Systems Engineering Inverse scattering Korteweg-Devries equation Mechanical Engineering Original Paper Poles Solitary waves Vibration |
title | Riemann-Hilbert problem and multiple poles solution for an extended modified Korteweg-de Vries equation with zero/nonzero boundary conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riemann-Hilbert%20problem%20and%20multiple%20poles%20solution%20for%20an%20extended%20modified%20Korteweg-de%20Vries%20equation%20with%20zero/nonzero%20boundary%20conditions&rft.jtitle=Nonlinear%20dynamics&rft.au=Xiao,%20Yu&rft.date=2022-10-01&rft.volume=110&rft.issue=2&rft.spage=1723&rft.epage=1746&rft.pages=1723-1746&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-022-07671-5&rft_dat=%3Cproquest_cross%3E2726153787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726153787&rft_id=info:pmid/&rfr_iscdi=true |