Barrier function-based adaptive integral sliding mode finite-time attitude control for rigid spacecraft
This paper investigates the problem of attitude tracking control with predefined-time convergence for rigid spacecraft under external disturbances and inertia uncertainties. Firstly, the proposed nominal controller is designed to achieve attitude tracking control of the rigid spacecraft in the absen...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2022-10, Vol.110 (2), p.1405-1420 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1420 |
---|---|
container_issue | 2 |
container_start_page | 1405 |
container_title | Nonlinear dynamics |
container_volume | 110 |
creator | Wang, Jie Hu, Yushang Ji, Wenqiang |
description | This paper investigates the problem of attitude tracking control with predefined-time convergence for rigid spacecraft under external disturbances and inertia uncertainties. Firstly, the proposed nominal controller is designed to achieve attitude tracking control of the rigid spacecraft in the absence of disturbances and inertia uncertainties, and the convergence of the spacecraft attitude errors can be selected in advance. Then, the integral sliding mode combined with barrier function-based adaptive laws is proposed to reject the disturbances and inertia uncertainties, and at the same time, a barrier function-based adaptive method can also ensure the solutions of the rigid spacecraft system belonging to a stipulated vicinity of the intended variables starting from the initial moment and the uncertainties’ upper bound is not overestimated. Finally, a numerical simulation is provided to illustrate the efficiency of the proposed control protocol. |
doi_str_mv | 10.1007/s11071-022-07727-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726146081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726146081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8aa95da22b5247c44f81339f59aed4599f3b0b653bff9faa6cd290d95bed302c3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbpE0mSx18wYAbhdmFNI-SodOOSSr4761WcOfqwuF858KH0CWFawogbzKlICkBxghIySQRR2hBa8kJE2p7jBagWEVAwfYUneW8AwDOYLVA7Z1JKfqEw9jbEoeeNCZ7h40zhxI_PI598W0yHc5ddLFv8X5wHofYx-JJiXuPTSmxjFNoh76kocNhSDjFNjqcD8Z6m0wo5-gkmC77i9-7RG8P96_rJ7J5eXxe326I5YIXsjJG1c4w1tSskraqwopyrkKtjHdVrVTgDTSi5k0IKhgjrGMKnKob7zgwy5foat49pOF99Lno3TCmfnqpmWSCVgKmxSVic8umIefkgz6kuDfpU1PQ30L1LFRPQvWPUC0miM9Qnsp969Pf9D_UFxeuevU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726146081</pqid></control><display><type>article</type><title>Barrier function-based adaptive integral sliding mode finite-time attitude control for rigid spacecraft</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Jie ; Hu, Yushang ; Ji, Wenqiang</creator><creatorcontrib>Wang, Jie ; Hu, Yushang ; Ji, Wenqiang</creatorcontrib><description>This paper investigates the problem of attitude tracking control with predefined-time convergence for rigid spacecraft under external disturbances and inertia uncertainties. Firstly, the proposed nominal controller is designed to achieve attitude tracking control of the rigid spacecraft in the absence of disturbances and inertia uncertainties, and the convergence of the spacecraft attitude errors can be selected in advance. Then, the integral sliding mode combined with barrier function-based adaptive laws is proposed to reject the disturbances and inertia uncertainties, and at the same time, a barrier function-based adaptive method can also ensure the solutions of the rigid spacecraft system belonging to a stipulated vicinity of the intended variables starting from the initial moment and the uncertainties’ upper bound is not overestimated. Finally, a numerical simulation is provided to illustrate the efficiency of the proposed control protocol.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-022-07727-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adaptive control ; Artificial intelligence ; Automotive Engineering ; Classical Mechanics ; Control ; Control systems design ; Controllers ; Convergence ; Design ; Disturbances ; Dynamical Systems ; Engineering ; Inertia ; Mechanical Engineering ; Original Paper ; Sliding mode control ; Spacecraft ; Spacecraft attitude control ; Spacecraft tracking ; Systems stability ; Tracking control ; Uncertainty ; Upper bounds ; Vibration</subject><ispartof>Nonlinear dynamics, 2022-10, Vol.110 (2), p.1405-1420</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8aa95da22b5247c44f81339f59aed4599f3b0b653bff9faa6cd290d95bed302c3</citedby><cites>FETCH-LOGICAL-c363t-8aa95da22b5247c44f81339f59aed4599f3b0b653bff9faa6cd290d95bed302c3</cites><orcidid>0000-0002-8613-3976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-022-07727-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-022-07727-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Hu, Yushang</creatorcontrib><creatorcontrib>Ji, Wenqiang</creatorcontrib><title>Barrier function-based adaptive integral sliding mode finite-time attitude control for rigid spacecraft</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This paper investigates the problem of attitude tracking control with predefined-time convergence for rigid spacecraft under external disturbances and inertia uncertainties. Firstly, the proposed nominal controller is designed to achieve attitude tracking control of the rigid spacecraft in the absence of disturbances and inertia uncertainties, and the convergence of the spacecraft attitude errors can be selected in advance. Then, the integral sliding mode combined with barrier function-based adaptive laws is proposed to reject the disturbances and inertia uncertainties, and at the same time, a barrier function-based adaptive method can also ensure the solutions of the rigid spacecraft system belonging to a stipulated vicinity of the intended variables starting from the initial moment and the uncertainties’ upper bound is not overestimated. Finally, a numerical simulation is provided to illustrate the efficiency of the proposed control protocol.</description><subject>Adaptive control</subject><subject>Artificial intelligence</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Convergence</subject><subject>Design</subject><subject>Disturbances</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Inertia</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Sliding mode control</subject><subject>Spacecraft</subject><subject>Spacecraft attitude control</subject><subject>Spacecraft tracking</subject><subject>Systems stability</subject><subject>Tracking control</subject><subject>Uncertainty</subject><subject>Upper bounds</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbpE0mSx18wYAbhdmFNI-SodOOSSr4761WcOfqwuF858KH0CWFawogbzKlICkBxghIySQRR2hBa8kJE2p7jBagWEVAwfYUneW8AwDOYLVA7Z1JKfqEw9jbEoeeNCZ7h40zhxI_PI598W0yHc5ddLFv8X5wHofYx-JJiXuPTSmxjFNoh76kocNhSDjFNjqcD8Z6m0wo5-gkmC77i9-7RG8P96_rJ7J5eXxe326I5YIXsjJG1c4w1tSskraqwopyrkKtjHdVrVTgDTSi5k0IKhgjrGMKnKob7zgwy5foat49pOF99Lno3TCmfnqpmWSCVgKmxSVic8umIefkgz6kuDfpU1PQ30L1LFRPQvWPUC0miM9Qnsp969Pf9D_UFxeuevU</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Wang, Jie</creator><creator>Hu, Yushang</creator><creator>Ji, Wenqiang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8613-3976</orcidid></search><sort><creationdate>20221001</creationdate><title>Barrier function-based adaptive integral sliding mode finite-time attitude control for rigid spacecraft</title><author>Wang, Jie ; Hu, Yushang ; Ji, Wenqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8aa95da22b5247c44f81339f59aed4599f3b0b653bff9faa6cd290d95bed302c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive control</topic><topic>Artificial intelligence</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Convergence</topic><topic>Design</topic><topic>Disturbances</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Inertia</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Sliding mode control</topic><topic>Spacecraft</topic><topic>Spacecraft attitude control</topic><topic>Spacecraft tracking</topic><topic>Systems stability</topic><topic>Tracking control</topic><topic>Uncertainty</topic><topic>Upper bounds</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Hu, Yushang</creatorcontrib><creatorcontrib>Ji, Wenqiang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jie</au><au>Hu, Yushang</au><au>Ji, Wenqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Barrier function-based adaptive integral sliding mode finite-time attitude control for rigid spacecraft</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>110</volume><issue>2</issue><spage>1405</spage><epage>1420</epage><pages>1405-1420</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This paper investigates the problem of attitude tracking control with predefined-time convergence for rigid spacecraft under external disturbances and inertia uncertainties. Firstly, the proposed nominal controller is designed to achieve attitude tracking control of the rigid spacecraft in the absence of disturbances and inertia uncertainties, and the convergence of the spacecraft attitude errors can be selected in advance. Then, the integral sliding mode combined with barrier function-based adaptive laws is proposed to reject the disturbances and inertia uncertainties, and at the same time, a barrier function-based adaptive method can also ensure the solutions of the rigid spacecraft system belonging to a stipulated vicinity of the intended variables starting from the initial moment and the uncertainties’ upper bound is not overestimated. Finally, a numerical simulation is provided to illustrate the efficiency of the proposed control protocol.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-022-07727-6</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8613-3976</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2022-10, Vol.110 (2), p.1405-1420 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2726146081 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adaptive control Artificial intelligence Automotive Engineering Classical Mechanics Control Control systems design Controllers Convergence Design Disturbances Dynamical Systems Engineering Inertia Mechanical Engineering Original Paper Sliding mode control Spacecraft Spacecraft attitude control Spacecraft tracking Systems stability Tracking control Uncertainty Upper bounds Vibration |
title | Barrier function-based adaptive integral sliding mode finite-time attitude control for rigid spacecraft |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Barrier%20function-based%20adaptive%20integral%20sliding%20mode%20finite-time%20attitude%20control%20for%20rigid%20spacecraft&rft.jtitle=Nonlinear%20dynamics&rft.au=Wang,%20Jie&rft.date=2022-10-01&rft.volume=110&rft.issue=2&rft.spage=1405&rft.epage=1420&rft.pages=1405-1420&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-022-07727-6&rft_dat=%3Cproquest_cross%3E2726146081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726146081&rft_id=info:pmid/&rfr_iscdi=true |