Bayesian Pseudoinverse Learners: From Uncertainty to Deterministic Learning
Pseudo-inverse learners (PILs) are a kind of feedforward neural network trained with the pseudoinverse learning algorithm, which can be traced back to 1995 originally. PIL is an approach for nongradient descent learning, and its main advantage is the lower computational cost and fast learning proced...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2022-11, Vol.52 (11), p.12205-12216 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12216 |
---|---|
container_issue | 11 |
container_start_page | 12205 |
container_title | IEEE transactions on cybernetics |
container_volume | 52 |
creator | Yin, Qian Xu, Bingxin Zhou, Kaiyan Guo, Ping |
description | Pseudo-inverse learners (PILs) are a kind of feedforward neural network trained with the pseudoinverse learning algorithm, which can be traced back to 1995 originally. PIL is an approach for nongradient descent learning, and its main advantage is the lower computational cost and fast learning procedure, which is especially relevant in the edge computing research field. However, PIL is mostly applied to a deterministic learning problem, while in the real world, the greatest case that is of concern is the uncertainty learning problem. In this work, under the framework of the synergetic learning system (SLS), we introduce an approximated synergetic learning scheme, which can transform uncertainty learning into deterministic learning. We call this new learning framework the Bayesian PIL, and the advantages are also demonstrated in this work. |
doi_str_mv | 10.1109/TCYB.2021.3079906 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2726126541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9445740</ieee_id><sourcerecordid>2536801248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-6dec0aa194c4388c5b70181d36ab015b8f4321fb45a81b9bd91a21da8adbe3e73</originalsourceid><addsrcrecordid>eNpdkMFKAzEQhoMottQ-gHhZ8OKlNZNkk6w3W62KBT20B08huzsrKW22JrtC394tLT04lxmG7x-Gj5BroGMAmt0vpl-TMaMMxpyqLKPyjPQZSD1iTKXnp1mqHhnGuKJd6W6V6UvS44IqxTXrk_eJ3WF01iefEduydv4XQ8Rkjjb4bnpIZqHeJEtfYGis880uaerkCRsMG-ddbFxxYJ3_viIXlV1HHB77gCxnz4vp62j-8fI2fZyPCs5kM5IlFtRayEQhuNZFmisKGkoubU4hzXUlOIMqF6nVkGd5mYFlUFptyxw5Kj4gd4e721D_tBgbs3GxwPXaeqzbaFjKpabAhO7Q23_oqm6D774zTDEJTKYCOgoOVBHqGANWZhvcxoadAWr2ss1ettnLNkfZXebmkHGIeOIzIVIlKP8DfZB4kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726126541</pqid></control><display><type>article</type><title>Bayesian Pseudoinverse Learners: From Uncertainty to Deterministic Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Yin, Qian ; Xu, Bingxin ; Zhou, Kaiyan ; Guo, Ping</creator><creatorcontrib>Yin, Qian ; Xu, Bingxin ; Zhou, Kaiyan ; Guo, Ping</creatorcontrib><description>Pseudo-inverse learners (PILs) are a kind of feedforward neural network trained with the pseudoinverse learning algorithm, which can be traced back to 1995 originally. PIL is an approach for nongradient descent learning, and its main advantage is the lower computational cost and fast learning procedure, which is especially relevant in the edge computing research field. However, PIL is mostly applied to a deterministic learning problem, while in the real world, the greatest case that is of concern is the uncertainty learning problem. In this work, under the framework of the synergetic learning system (SLS), we introduce an approximated synergetic learning scheme, which can transform uncertainty learning into deterministic learning. We call this new learning framework the Bayesian PIL, and the advantages are also demonstrated in this work.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2021.3079906</identifier><identifier>PMID: 34077382</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Bayes methods ; Bayesian ; Bayesian analysis ; Computational modeling ; Edge computing ; feedforward neural networks ; Machine learning ; mixture priors ; Modeling ; Neural networks ; Probabilistic logic ; pseudoinverse learners (PILs) ; synergetic learning ; Task analysis ; Uncertainty</subject><ispartof>IEEE transactions on cybernetics, 2022-11, Vol.52 (11), p.12205-12216</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-6dec0aa194c4388c5b70181d36ab015b8f4321fb45a81b9bd91a21da8adbe3e73</citedby><cites>FETCH-LOGICAL-c326t-6dec0aa194c4388c5b70181d36ab015b8f4321fb45a81b9bd91a21da8adbe3e73</cites><orcidid>0000-0002-0354-5490 ; 0000-0002-7122-1084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9445740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9445740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yin, Qian</creatorcontrib><creatorcontrib>Xu, Bingxin</creatorcontrib><creatorcontrib>Zhou, Kaiyan</creatorcontrib><creatorcontrib>Guo, Ping</creatorcontrib><title>Bayesian Pseudoinverse Learners: From Uncertainty to Deterministic Learning</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><description>Pseudo-inverse learners (PILs) are a kind of feedforward neural network trained with the pseudoinverse learning algorithm, which can be traced back to 1995 originally. PIL is an approach for nongradient descent learning, and its main advantage is the lower computational cost and fast learning procedure, which is especially relevant in the edge computing research field. However, PIL is mostly applied to a deterministic learning problem, while in the real world, the greatest case that is of concern is the uncertainty learning problem. In this work, under the framework of the synergetic learning system (SLS), we introduce an approximated synergetic learning scheme, which can transform uncertainty learning into deterministic learning. We call this new learning framework the Bayesian PIL, and the advantages are also demonstrated in this work.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bayes methods</subject><subject>Bayesian</subject><subject>Bayesian analysis</subject><subject>Computational modeling</subject><subject>Edge computing</subject><subject>feedforward neural networks</subject><subject>Machine learning</subject><subject>mixture priors</subject><subject>Modeling</subject><subject>Neural networks</subject><subject>Probabilistic logic</subject><subject>pseudoinverse learners (PILs)</subject><subject>synergetic learning</subject><subject>Task analysis</subject><subject>Uncertainty</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMFKAzEQhoMottQ-gHhZ8OKlNZNkk6w3W62KBT20B08huzsrKW22JrtC394tLT04lxmG7x-Gj5BroGMAmt0vpl-TMaMMxpyqLKPyjPQZSD1iTKXnp1mqHhnGuKJd6W6V6UvS44IqxTXrk_eJ3WF01iefEduydv4XQ8Rkjjb4bnpIZqHeJEtfYGis880uaerkCRsMG-ddbFxxYJ3_viIXlV1HHB77gCxnz4vp62j-8fI2fZyPCs5kM5IlFtRayEQhuNZFmisKGkoubU4hzXUlOIMqF6nVkGd5mYFlUFptyxw5Kj4gd4e721D_tBgbs3GxwPXaeqzbaFjKpabAhO7Q23_oqm6D774zTDEJTKYCOgoOVBHqGANWZhvcxoadAWr2ss1ettnLNkfZXebmkHGIeOIzIVIlKP8DfZB4kA</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Yin, Qian</creator><creator>Xu, Bingxin</creator><creator>Zhou, Kaiyan</creator><creator>Guo, Ping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0354-5490</orcidid><orcidid>https://orcid.org/0000-0002-7122-1084</orcidid></search><sort><creationdate>20221101</creationdate><title>Bayesian Pseudoinverse Learners: From Uncertainty to Deterministic Learning</title><author>Yin, Qian ; Xu, Bingxin ; Zhou, Kaiyan ; Guo, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-6dec0aa194c4388c5b70181d36ab015b8f4321fb45a81b9bd91a21da8adbe3e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bayes methods</topic><topic>Bayesian</topic><topic>Bayesian analysis</topic><topic>Computational modeling</topic><topic>Edge computing</topic><topic>feedforward neural networks</topic><topic>Machine learning</topic><topic>mixture priors</topic><topic>Modeling</topic><topic>Neural networks</topic><topic>Probabilistic logic</topic><topic>pseudoinverse learners (PILs)</topic><topic>synergetic learning</topic><topic>Task analysis</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Qian</creatorcontrib><creatorcontrib>Xu, Bingxin</creatorcontrib><creatorcontrib>Zhou, Kaiyan</creatorcontrib><creatorcontrib>Guo, Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yin, Qian</au><au>Xu, Bingxin</au><au>Zhou, Kaiyan</au><au>Guo, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Pseudoinverse Learners: From Uncertainty to Deterministic Learning</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>52</volume><issue>11</issue><spage>12205</spage><epage>12216</epage><pages>12205-12216</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Pseudo-inverse learners (PILs) are a kind of feedforward neural network trained with the pseudoinverse learning algorithm, which can be traced back to 1995 originally. PIL is an approach for nongradient descent learning, and its main advantage is the lower computational cost and fast learning procedure, which is especially relevant in the edge computing research field. However, PIL is mostly applied to a deterministic learning problem, while in the real world, the greatest case that is of concern is the uncertainty learning problem. In this work, under the framework of the synergetic learning system (SLS), we introduce an approximated synergetic learning scheme, which can transform uncertainty learning into deterministic learning. We call this new learning framework the Bayesian PIL, and the advantages are also demonstrated in this work.</abstract><cop>Piscataway</cop><pub>IEEE</pub><pmid>34077382</pmid><doi>10.1109/TCYB.2021.3079906</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0354-5490</orcidid><orcidid>https://orcid.org/0000-0002-7122-1084</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2022-11, Vol.52 (11), p.12205-12216 |
issn | 2168-2267 2168-2275 |
language | eng |
recordid | cdi_proquest_journals_2726126541 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Bayes methods Bayesian Bayesian analysis Computational modeling Edge computing feedforward neural networks Machine learning mixture priors Modeling Neural networks Probabilistic logic pseudoinverse learners (PILs) synergetic learning Task analysis Uncertainty |
title | Bayesian Pseudoinverse Learners: From Uncertainty to Deterministic Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Pseudoinverse%20Learners:%20From%20Uncertainty%20to%20Deterministic%20Learning&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Yin,%20Qian&rft.date=2022-11-01&rft.volume=52&rft.issue=11&rft.spage=12205&rft.epage=12216&rft.pages=12205-12216&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2021.3079906&rft_dat=%3Cproquest_RIE%3E2536801248%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726126541&rft_id=info:pmid/34077382&rft_ieee_id=9445740&rfr_iscdi=true |