Bayesian Pseudoinverse Learners: From Uncertainty to Deterministic Learning

Pseudo-inverse learners (PILs) are a kind of feedforward neural network trained with the pseudoinverse learning algorithm, which can be traced back to 1995 originally. PIL is an approach for nongradient descent learning, and its main advantage is the lower computational cost and fast learning proced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2022-11, Vol.52 (11), p.12205-12216
Hauptverfasser: Yin, Qian, Xu, Bingxin, Zhou, Kaiyan, Guo, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12216
container_issue 11
container_start_page 12205
container_title IEEE transactions on cybernetics
container_volume 52
creator Yin, Qian
Xu, Bingxin
Zhou, Kaiyan
Guo, Ping
description Pseudo-inverse learners (PILs) are a kind of feedforward neural network trained with the pseudoinverse learning algorithm, which can be traced back to 1995 originally. PIL is an approach for nongradient descent learning, and its main advantage is the lower computational cost and fast learning procedure, which is especially relevant in the edge computing research field. However, PIL is mostly applied to a deterministic learning problem, while in the real world, the greatest case that is of concern is the uncertainty learning problem. In this work, under the framework of the synergetic learning system (SLS), we introduce an approximated synergetic learning scheme, which can transform uncertainty learning into deterministic learning. We call this new learning framework the Bayesian PIL, and the advantages are also demonstrated in this work.
doi_str_mv 10.1109/TCYB.2021.3079906
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2726126541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9445740</ieee_id><sourcerecordid>2536801248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-6dec0aa194c4388c5b70181d36ab015b8f4321fb45a81b9bd91a21da8adbe3e73</originalsourceid><addsrcrecordid>eNpdkMFKAzEQhoMottQ-gHhZ8OKlNZNkk6w3W62KBT20B08huzsrKW22JrtC394tLT04lxmG7x-Gj5BroGMAmt0vpl-TMaMMxpyqLKPyjPQZSD1iTKXnp1mqHhnGuKJd6W6V6UvS44IqxTXrk_eJ3WF01iefEduydv4XQ8Rkjjb4bnpIZqHeJEtfYGis880uaerkCRsMG-ddbFxxYJ3_viIXlV1HHB77gCxnz4vp62j-8fI2fZyPCs5kM5IlFtRayEQhuNZFmisKGkoubU4hzXUlOIMqF6nVkGd5mYFlUFptyxw5Kj4gd4e721D_tBgbs3GxwPXaeqzbaFjKpabAhO7Q23_oqm6D774zTDEJTKYCOgoOVBHqGANWZhvcxoadAWr2ss1ettnLNkfZXebmkHGIeOIzIVIlKP8DfZB4kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726126541</pqid></control><display><type>article</type><title>Bayesian Pseudoinverse Learners: From Uncertainty to Deterministic Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Yin, Qian ; Xu, Bingxin ; Zhou, Kaiyan ; Guo, Ping</creator><creatorcontrib>Yin, Qian ; Xu, Bingxin ; Zhou, Kaiyan ; Guo, Ping</creatorcontrib><description>Pseudo-inverse learners (PILs) are a kind of feedforward neural network trained with the pseudoinverse learning algorithm, which can be traced back to 1995 originally. PIL is an approach for nongradient descent learning, and its main advantage is the lower computational cost and fast learning procedure, which is especially relevant in the edge computing research field. However, PIL is mostly applied to a deterministic learning problem, while in the real world, the greatest case that is of concern is the uncertainty learning problem. In this work, under the framework of the synergetic learning system (SLS), we introduce an approximated synergetic learning scheme, which can transform uncertainty learning into deterministic learning. We call this new learning framework the Bayesian PIL, and the advantages are also demonstrated in this work.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2021.3079906</identifier><identifier>PMID: 34077382</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Bayes methods ; Bayesian ; Bayesian analysis ; Computational modeling ; Edge computing ; feedforward neural networks ; Machine learning ; mixture priors ; Modeling ; Neural networks ; Probabilistic logic ; pseudoinverse learners (PILs) ; synergetic learning ; Task analysis ; Uncertainty</subject><ispartof>IEEE transactions on cybernetics, 2022-11, Vol.52 (11), p.12205-12216</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-6dec0aa194c4388c5b70181d36ab015b8f4321fb45a81b9bd91a21da8adbe3e73</citedby><cites>FETCH-LOGICAL-c326t-6dec0aa194c4388c5b70181d36ab015b8f4321fb45a81b9bd91a21da8adbe3e73</cites><orcidid>0000-0002-0354-5490 ; 0000-0002-7122-1084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9445740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9445740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yin, Qian</creatorcontrib><creatorcontrib>Xu, Bingxin</creatorcontrib><creatorcontrib>Zhou, Kaiyan</creatorcontrib><creatorcontrib>Guo, Ping</creatorcontrib><title>Bayesian Pseudoinverse Learners: From Uncertainty to Deterministic Learning</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><description>Pseudo-inverse learners (PILs) are a kind of feedforward neural network trained with the pseudoinverse learning algorithm, which can be traced back to 1995 originally. PIL is an approach for nongradient descent learning, and its main advantage is the lower computational cost and fast learning procedure, which is especially relevant in the edge computing research field. However, PIL is mostly applied to a deterministic learning problem, while in the real world, the greatest case that is of concern is the uncertainty learning problem. In this work, under the framework of the synergetic learning system (SLS), we introduce an approximated synergetic learning scheme, which can transform uncertainty learning into deterministic learning. We call this new learning framework the Bayesian PIL, and the advantages are also demonstrated in this work.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bayes methods</subject><subject>Bayesian</subject><subject>Bayesian analysis</subject><subject>Computational modeling</subject><subject>Edge computing</subject><subject>feedforward neural networks</subject><subject>Machine learning</subject><subject>mixture priors</subject><subject>Modeling</subject><subject>Neural networks</subject><subject>Probabilistic logic</subject><subject>pseudoinverse learners (PILs)</subject><subject>synergetic learning</subject><subject>Task analysis</subject><subject>Uncertainty</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMFKAzEQhoMottQ-gHhZ8OKlNZNkk6w3W62KBT20B08huzsrKW22JrtC394tLT04lxmG7x-Gj5BroGMAmt0vpl-TMaMMxpyqLKPyjPQZSD1iTKXnp1mqHhnGuKJd6W6V6UvS44IqxTXrk_eJ3WF01iefEduydv4XQ8Rkjjb4bnpIZqHeJEtfYGis880uaerkCRsMG-ddbFxxYJ3_viIXlV1HHB77gCxnz4vp62j-8fI2fZyPCs5kM5IlFtRayEQhuNZFmisKGkoubU4hzXUlOIMqF6nVkGd5mYFlUFptyxw5Kj4gd4e721D_tBgbs3GxwPXaeqzbaFjKpabAhO7Q23_oqm6D774zTDEJTKYCOgoOVBHqGANWZhvcxoadAWr2ss1ettnLNkfZXebmkHGIeOIzIVIlKP8DfZB4kA</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Yin, Qian</creator><creator>Xu, Bingxin</creator><creator>Zhou, Kaiyan</creator><creator>Guo, Ping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0354-5490</orcidid><orcidid>https://orcid.org/0000-0002-7122-1084</orcidid></search><sort><creationdate>20221101</creationdate><title>Bayesian Pseudoinverse Learners: From Uncertainty to Deterministic Learning</title><author>Yin, Qian ; Xu, Bingxin ; Zhou, Kaiyan ; Guo, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-6dec0aa194c4388c5b70181d36ab015b8f4321fb45a81b9bd91a21da8adbe3e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bayes methods</topic><topic>Bayesian</topic><topic>Bayesian analysis</topic><topic>Computational modeling</topic><topic>Edge computing</topic><topic>feedforward neural networks</topic><topic>Machine learning</topic><topic>mixture priors</topic><topic>Modeling</topic><topic>Neural networks</topic><topic>Probabilistic logic</topic><topic>pseudoinverse learners (PILs)</topic><topic>synergetic learning</topic><topic>Task analysis</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Qian</creatorcontrib><creatorcontrib>Xu, Bingxin</creatorcontrib><creatorcontrib>Zhou, Kaiyan</creatorcontrib><creatorcontrib>Guo, Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yin, Qian</au><au>Xu, Bingxin</au><au>Zhou, Kaiyan</au><au>Guo, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Pseudoinverse Learners: From Uncertainty to Deterministic Learning</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>52</volume><issue>11</issue><spage>12205</spage><epage>12216</epage><pages>12205-12216</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Pseudo-inverse learners (PILs) are a kind of feedforward neural network trained with the pseudoinverse learning algorithm, which can be traced back to 1995 originally. PIL is an approach for nongradient descent learning, and its main advantage is the lower computational cost and fast learning procedure, which is especially relevant in the edge computing research field. However, PIL is mostly applied to a deterministic learning problem, while in the real world, the greatest case that is of concern is the uncertainty learning problem. In this work, under the framework of the synergetic learning system (SLS), we introduce an approximated synergetic learning scheme, which can transform uncertainty learning into deterministic learning. We call this new learning framework the Bayesian PIL, and the advantages are also demonstrated in this work.</abstract><cop>Piscataway</cop><pub>IEEE</pub><pmid>34077382</pmid><doi>10.1109/TCYB.2021.3079906</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0354-5490</orcidid><orcidid>https://orcid.org/0000-0002-7122-1084</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2022-11, Vol.52 (11), p.12205-12216
issn 2168-2267
2168-2275
language eng
recordid cdi_proquest_journals_2726126541
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Bayes methods
Bayesian
Bayesian analysis
Computational modeling
Edge computing
feedforward neural networks
Machine learning
mixture priors
Modeling
Neural networks
Probabilistic logic
pseudoinverse learners (PILs)
synergetic learning
Task analysis
Uncertainty
title Bayesian Pseudoinverse Learners: From Uncertainty to Deterministic Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Pseudoinverse%20Learners:%20From%20Uncertainty%20to%20Deterministic%20Learning&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Yin,%20Qian&rft.date=2022-11-01&rft.volume=52&rft.issue=11&rft.spage=12205&rft.epage=12216&rft.pages=12205-12216&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2021.3079906&rft_dat=%3Cproquest_RIE%3E2536801248%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726126541&rft_id=info:pmid/34077382&rft_ieee_id=9445740&rfr_iscdi=true