Augmentation Adversarial Training for Self-Supervised Speaker Representation Learning
The goal of this work is to train robust speaker recognition models using self-supervised representation learning. Recent works on self-supervised speaker representations are based on contrastive learning in which they encourage within-utterance embeddings to be similar and across-utterance embeddin...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in signal processing 2022-10, Vol.16 (6), p.1253-1262 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1262 |
---|---|
container_issue | 6 |
container_start_page | 1253 |
container_title | IEEE journal of selected topics in signal processing |
container_volume | 16 |
creator | Kang, Jingu Huh, Jaesung Heo, Hee Soo Chung, Joon Son |
description | The goal of this work is to train robust speaker recognition models using self-supervised representation learning. Recent works on self-supervised speaker representations are based on contrastive learning in which they encourage within-utterance embeddings to be similar and across-utterance embeddings to be dissimilar. However, since the within-utterance segments share the same acoustic characteristics, it is difficult to separate the speaker information from the channel information. To this end, we propose an augmentation adversarial training strategy that trains the network to be discriminative for the speaker information, while invariant to the augmentation applied. Since the augmentation simulates the acoustic characteristics, training the network to be invariant to augmentation also encourages the network to be invariant to the channel information in general. Extensive experiments on the VoxCeleb and VOiCES datasets show significant improvements over previous works using self-supervision, and the performance of our self-supervised models far exceeds that of humans. We also conduct semi-supervised learning experiments to show that augmentation adversarial training benefits performance in presence of speaker labels. |
doi_str_mv | 10.1109/JSTSP.2022.3200915 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2726108495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9864218</ieee_id><sourcerecordid>2726108495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-ad1c1c9ee10e66696a670a78913deb7b577e1bd81ca7f91db3abbcfa968680293</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFb_gG4CrlPnzUzmY1mKVqWgmHY9TJKXktomcSYp-O9tbOnqvsU978Ih5B7oBICap_d0mX5OGGVswhmlBpILMgIjIKZCi8vh5iwWScKvyU0IG0oTJUGMyGrar3dYd66rmjqaFnv0wfnKbaOld1Vd1euobHyU4raM075Fv68CFlHaovtGH31h6zGc-QU6PzC35Kp024B3pxyT1cvzcvYaLz7mb7PpIs6ZSbrYFZBDbhCBopTSSCcVdUob4AVmKkuUQsgKDblTpYEi4y7L8tIZqaWmzPAxeTz-bX3z02Po7KbpfX2YtEwxCVQLkxxa7NjKfROCx9K2vto5_2uB2kGf_ddnB332pO8APRyhChHPgNFSMND8D7KYbVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726108495</pqid></control><display><type>article</type><title>Augmentation Adversarial Training for Self-Supervised Speaker Representation Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Kang, Jingu ; Huh, Jaesung ; Heo, Hee Soo ; Chung, Joon Son</creator><creatorcontrib>Kang, Jingu ; Huh, Jaesung ; Heo, Hee Soo ; Chung, Joon Son</creatorcontrib><description>The goal of this work is to train robust speaker recognition models using self-supervised representation learning. Recent works on self-supervised speaker representations are based on contrastive learning in which they encourage within-utterance embeddings to be similar and across-utterance embeddings to be dissimilar. However, since the within-utterance segments share the same acoustic characteristics, it is difficult to separate the speaker information from the channel information. To this end, we propose an augmentation adversarial training strategy that trains the network to be discriminative for the speaker information, while invariant to the augmentation applied. Since the augmentation simulates the acoustic characteristics, training the network to be invariant to augmentation also encourages the network to be invariant to the channel information in general. Extensive experiments on the VoxCeleb and VOiCES datasets show significant improvements over previous works using self-supervision, and the performance of our self-supervised models far exceeds that of humans. We also conduct semi-supervised learning experiments to show that augmentation adversarial training benefits performance in presence of speaker labels.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2022.3200915</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Augmentation ; Invariants ; Representation learning ; Representations ; Self-supervised learning ; Semi-supervised learning ; Semisupervised learning ; Speaker recognition ; Speech recognition ; Training</subject><ispartof>IEEE journal of selected topics in signal processing, 2022-10, Vol.16 (6), p.1253-1262</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-ad1c1c9ee10e66696a670a78913deb7b577e1bd81ca7f91db3abbcfa968680293</citedby><cites>FETCH-LOGICAL-c295t-ad1c1c9ee10e66696a670a78913deb7b577e1bd81ca7f91db3abbcfa968680293</cites><orcidid>0000-0001-7741-7275 ; 0000-0002-9284-5945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9864218$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27906,27907,54740</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9864218$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kang, Jingu</creatorcontrib><creatorcontrib>Huh, Jaesung</creatorcontrib><creatorcontrib>Heo, Hee Soo</creatorcontrib><creatorcontrib>Chung, Joon Son</creatorcontrib><title>Augmentation Adversarial Training for Self-Supervised Speaker Representation Learning</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>The goal of this work is to train robust speaker recognition models using self-supervised representation learning. Recent works on self-supervised speaker representations are based on contrastive learning in which they encourage within-utterance embeddings to be similar and across-utterance embeddings to be dissimilar. However, since the within-utterance segments share the same acoustic characteristics, it is difficult to separate the speaker information from the channel information. To this end, we propose an augmentation adversarial training strategy that trains the network to be discriminative for the speaker information, while invariant to the augmentation applied. Since the augmentation simulates the acoustic characteristics, training the network to be invariant to augmentation also encourages the network to be invariant to the channel information in general. Extensive experiments on the VoxCeleb and VOiCES datasets show significant improvements over previous works using self-supervision, and the performance of our self-supervised models far exceeds that of humans. We also conduct semi-supervised learning experiments to show that augmentation adversarial training benefits performance in presence of speaker labels.</description><subject>Augmentation</subject><subject>Invariants</subject><subject>Representation learning</subject><subject>Representations</subject><subject>Self-supervised learning</subject><subject>Semi-supervised learning</subject><subject>Semisupervised learning</subject><subject>Speaker recognition</subject><subject>Speech recognition</subject><subject>Training</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AURQdRsFb_gG4CrlPnzUzmY1mKVqWgmHY9TJKXktomcSYp-O9tbOnqvsU978Ih5B7oBICap_d0mX5OGGVswhmlBpILMgIjIKZCi8vh5iwWScKvyU0IG0oTJUGMyGrar3dYd66rmjqaFnv0wfnKbaOld1Vd1euobHyU4raM075Fv68CFlHaovtGH31h6zGc-QU6PzC35Kp024B3pxyT1cvzcvYaLz7mb7PpIs6ZSbrYFZBDbhCBopTSSCcVdUob4AVmKkuUQsgKDblTpYEi4y7L8tIZqaWmzPAxeTz-bX3z02Po7KbpfX2YtEwxCVQLkxxa7NjKfROCx9K2vto5_2uB2kGf_ddnB332pO8APRyhChHPgNFSMND8D7KYbVs</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Kang, Jingu</creator><creator>Huh, Jaesung</creator><creator>Heo, Hee Soo</creator><creator>Chung, Joon Son</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7741-7275</orcidid><orcidid>https://orcid.org/0000-0002-9284-5945</orcidid></search><sort><creationdate>20221001</creationdate><title>Augmentation Adversarial Training for Self-Supervised Speaker Representation Learning</title><author>Kang, Jingu ; Huh, Jaesung ; Heo, Hee Soo ; Chung, Joon Son</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-ad1c1c9ee10e66696a670a78913deb7b577e1bd81ca7f91db3abbcfa968680293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Augmentation</topic><topic>Invariants</topic><topic>Representation learning</topic><topic>Representations</topic><topic>Self-supervised learning</topic><topic>Semi-supervised learning</topic><topic>Semisupervised learning</topic><topic>Speaker recognition</topic><topic>Speech recognition</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Jingu</creatorcontrib><creatorcontrib>Huh, Jaesung</creatorcontrib><creatorcontrib>Heo, Hee Soo</creatorcontrib><creatorcontrib>Chung, Joon Son</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kang, Jingu</au><au>Huh, Jaesung</au><au>Heo, Hee Soo</au><au>Chung, Joon Son</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmentation Adversarial Training for Self-Supervised Speaker Representation Learning</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>16</volume><issue>6</issue><spage>1253</spage><epage>1262</epage><pages>1253-1262</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>The goal of this work is to train robust speaker recognition models using self-supervised representation learning. Recent works on self-supervised speaker representations are based on contrastive learning in which they encourage within-utterance embeddings to be similar and across-utterance embeddings to be dissimilar. However, since the within-utterance segments share the same acoustic characteristics, it is difficult to separate the speaker information from the channel information. To this end, we propose an augmentation adversarial training strategy that trains the network to be discriminative for the speaker information, while invariant to the augmentation applied. Since the augmentation simulates the acoustic characteristics, training the network to be invariant to augmentation also encourages the network to be invariant to the channel information in general. Extensive experiments on the VoxCeleb and VOiCES datasets show significant improvements over previous works using self-supervision, and the performance of our self-supervised models far exceeds that of humans. We also conduct semi-supervised learning experiments to show that augmentation adversarial training benefits performance in presence of speaker labels.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2022.3200915</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7741-7275</orcidid><orcidid>https://orcid.org/0000-0002-9284-5945</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4553 |
ispartof | IEEE journal of selected topics in signal processing, 2022-10, Vol.16 (6), p.1253-1262 |
issn | 1932-4553 1941-0484 |
language | eng |
recordid | cdi_proquest_journals_2726108495 |
source | IEEE Electronic Library (IEL) |
subjects | Augmentation Invariants Representation learning Representations Self-supervised learning Semi-supervised learning Semisupervised learning Speaker recognition Speech recognition Training |
title | Augmentation Adversarial Training for Self-Supervised Speaker Representation Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmentation%20Adversarial%20Training%20for%20Self-Supervised%20Speaker%20Representation%20Learning&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Kang,%20Jingu&rft.date=2022-10-01&rft.volume=16&rft.issue=6&rft.spage=1253&rft.epage=1262&rft.pages=1253-1262&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2022.3200915&rft_dat=%3Cproquest_RIE%3E2726108495%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726108495&rft_id=info:pmid/&rft_ieee_id=9864218&rfr_iscdi=true |