New Insight into Microstructure Engineering of Ni‐Rich Layered Oxide Cathode for High Performance Lithium Ion Batteries
Ni‐rich layered LiNixCoyMn1−x−yO2 (LNCM) with Ni content over >90% is considered as a promising lithium ion battery (LIB) cathode, attributed by its low cost and high practical capacity. However, Ni‐rich LNCM inevitably suffers rapid capacity fading at a high state of charge due to the mechanoche...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-05, Vol.31 (18), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ni‐rich layered LiNixCoyMn1−x−yO2 (LNCM) with Ni content over >90% is considered as a promising lithium ion battery (LIB) cathode, attributed by its low cost and high practical capacity. However, Ni‐rich LNCM inevitably suffers rapid capacity fading at a high state of charge due to the mechanochemical breakdown; in particular, the microcrack formation has been regarded as one of the main culprits for Ni‐rich layered cathode failure. To address these issues, Ni‐rich layered cathodes with a textured microstructure are developed by phosphorous and boron doping. Attributed by the textured morphology, both phosphorous‐ and boron‐doped cathodes suppress microcrack formation and show enhanced cycle stability compared to the undoped cathode. However, there exists a meaningful capacity retention difference between the doped cathodes. By adapting the various analysis techniques, it is shown that the boron‐doped Ni‐rich layered cathode displays better cycle stability not only by its ability to suppress microcracks during cycling but also by its primary particle morphology that is reluctant to oxygen evolution. The present work reveals that not only restraint of particle cracks but also suppression of oxygen release by developing the oxygen stable facets is important for further improvements in state‐of‐the‐art Li ion battery Ni‐rich layered cathode materials.
Herein, the effect of boron doping on oxygen stability in LiNi0.92Co0.04Mn0.04O2 (LNCM) lithium ion battery cathodes is systematically investigated using various measurements. The boron‐doped LNCM produces the textured microstructure with more oxygen stabilized facets, thus not only aiding in restraining the particle cracks but also effectively suppressing the oxygen evolution to improve the cycle stability. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202010095 |