Sulfide Chalcopyrite Solar Cells––Are They the Same as Selenides with a Wider Bandgap?
Sulfide chalcopyrite solar cells are receiving renewed interest since they have reached a certified efficiency above 15%. Due to their wider bandgap, they are interesting candidates for top cells in tandem applications. They share many properties with the much deeper studied selenide chalcopyrites,...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. PSS-RRL. Rapid research letters 2022-08, Vol.16 (8), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Physica status solidi. PSS-RRL. Rapid research letters |
container_volume | 16 |
creator | Siebentritt, Susanne Lomuscio, Alberto Adeleye, Damilola Sood, Mohit Dwivedi, Aradhana |
description | Sulfide chalcopyrite solar cells are receiving renewed interest since they have reached a certified efficiency above 15%. Due to their wider bandgap, they are interesting candidates for top cells in tandem applications. They share many properties with the much deeper studied selenide chalcopyrites, but also some important differences. While the structure of shallow and deep defects appears very similar, the phase diagram is different with a much smaller existence range of Cu‐poor CuInS2. The problematic character of the surface of material grown under Cu excess is present in both sulfides and selenides. Both materials show increased tail states when grown Cu‐poor. To achieve sufficient bulk quality of sulfide absorbers, higher growth temperatures and a higher supply of sodium appear to be necessary.
The bulk and surface properties of sulfide chalcopyrite semiconductors, relevant for their use as top cells in tandem solar cells are reviewed. |
doi_str_mv | 10.1002/pssr.202200126 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726024341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726024341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-4491c31d6bb4e0044ea502af78dcca6c2ca0f348a69eb2df077017410c7ffacd3</originalsourceid><addsrcrecordid>eNqFkN9KwzAUh4MoOKe3Xge87jxJ02S9kln8BwPFTgRvQpamtiNba9Ixeuc7-IY-iRmTeSkcOCfk950DH0LnBEYEgF623rsRBUoBCOUHaEDGnEacCjjczwk7RifeLwCSVLB4gN7ytS3rwuCsUlY3be_qzuC8scrhzFjrvz-_Qk2cwbPK9Lirwq9aGqw8zo01q8B6vKm7Civ8Gh4OX6tV8a7aq1N0VCrrzdlvH6KX25tZdh9NH-8essk00nEieMRYSnRMCj6fMwPAmFEJUFWKcaG14ppqBWXMxoqnZk6LEoQAIhgBLcpS6SIeoovd3tY1H2vjO7lo1m4VTkoqKAfKYkZCarRLadcEUaaUrauXyvWSgNz6k1t_cu8vAOkO2NTW9P-k5VOeP_-xPxK9dgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726024341</pqid></control><display><type>article</type><title>Sulfide Chalcopyrite Solar Cells––Are They the Same as Selenides with a Wider Bandgap?</title><source>Access via Wiley Online Library</source><creator>Siebentritt, Susanne ; Lomuscio, Alberto ; Adeleye, Damilola ; Sood, Mohit ; Dwivedi, Aradhana</creator><creatorcontrib>Siebentritt, Susanne ; Lomuscio, Alberto ; Adeleye, Damilola ; Sood, Mohit ; Dwivedi, Aradhana</creatorcontrib><description>Sulfide chalcopyrite solar cells are receiving renewed interest since they have reached a certified efficiency above 15%. Due to their wider bandgap, they are interesting candidates for top cells in tandem applications. They share many properties with the much deeper studied selenide chalcopyrites, but also some important differences. While the structure of shallow and deep defects appears very similar, the phase diagram is different with a much smaller existence range of Cu‐poor CuInS2. The problematic character of the surface of material grown under Cu excess is present in both sulfides and selenides. Both materials show increased tail states when grown Cu‐poor. To achieve sufficient bulk quality of sulfide absorbers, higher growth temperatures and a higher supply of sodium appear to be necessary.
The bulk and surface properties of sulfide chalcopyrite semiconductors, relevant for their use as top cells in tandem solar cells are reviewed.</description><identifier>ISSN: 1862-6254</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.202200126</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chalcopyrite ; defects ; Energy gap ; Phase diagrams ; Photovoltaic cells ; recombination ; Selenides ; solar cell ; Solar cells ; tail states</subject><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2022-08, Vol.16 (8), p.n/a</ispartof><rights>2022 The Authors. physica status solidi (RRL) Rapid Research Letters published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-4491c31d6bb4e0044ea502af78dcca6c2ca0f348a69eb2df077017410c7ffacd3</citedby><cites>FETCH-LOGICAL-c3576-4491c31d6bb4e0044ea502af78dcca6c2ca0f348a69eb2df077017410c7ffacd3</cites><orcidid>0000-0001-6522-1427 ; 0000-0001-6359-9100 ; 0000-0002-2714-7737 ; 0000-0002-3356-2486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssr.202200126$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssr.202200126$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Siebentritt, Susanne</creatorcontrib><creatorcontrib>Lomuscio, Alberto</creatorcontrib><creatorcontrib>Adeleye, Damilola</creatorcontrib><creatorcontrib>Sood, Mohit</creatorcontrib><creatorcontrib>Dwivedi, Aradhana</creatorcontrib><title>Sulfide Chalcopyrite Solar Cells––Are They the Same as Selenides with a Wider Bandgap?</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><description>Sulfide chalcopyrite solar cells are receiving renewed interest since they have reached a certified efficiency above 15%. Due to their wider bandgap, they are interesting candidates for top cells in tandem applications. They share many properties with the much deeper studied selenide chalcopyrites, but also some important differences. While the structure of shallow and deep defects appears very similar, the phase diagram is different with a much smaller existence range of Cu‐poor CuInS2. The problematic character of the surface of material grown under Cu excess is present in both sulfides and selenides. Both materials show increased tail states when grown Cu‐poor. To achieve sufficient bulk quality of sulfide absorbers, higher growth temperatures and a higher supply of sodium appear to be necessary.
The bulk and surface properties of sulfide chalcopyrite semiconductors, relevant for their use as top cells in tandem solar cells are reviewed.</description><subject>Chalcopyrite</subject><subject>defects</subject><subject>Energy gap</subject><subject>Phase diagrams</subject><subject>Photovoltaic cells</subject><subject>recombination</subject><subject>Selenides</subject><subject>solar cell</subject><subject>Solar cells</subject><subject>tail states</subject><issn>1862-6254</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkN9KwzAUh4MoOKe3Xge87jxJ02S9kln8BwPFTgRvQpamtiNba9Ixeuc7-IY-iRmTeSkcOCfk950DH0LnBEYEgF623rsRBUoBCOUHaEDGnEacCjjczwk7RifeLwCSVLB4gN7ytS3rwuCsUlY3be_qzuC8scrhzFjrvz-_Qk2cwbPK9Lirwq9aGqw8zo01q8B6vKm7Civ8Gh4OX6tV8a7aq1N0VCrrzdlvH6KX25tZdh9NH-8essk00nEieMRYSnRMCj6fMwPAmFEJUFWKcaG14ppqBWXMxoqnZk6LEoQAIhgBLcpS6SIeoovd3tY1H2vjO7lo1m4VTkoqKAfKYkZCarRLadcEUaaUrauXyvWSgNz6k1t_cu8vAOkO2NTW9P-k5VOeP_-xPxK9dgg</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Siebentritt, Susanne</creator><creator>Lomuscio, Alberto</creator><creator>Adeleye, Damilola</creator><creator>Sood, Mohit</creator><creator>Dwivedi, Aradhana</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6522-1427</orcidid><orcidid>https://orcid.org/0000-0001-6359-9100</orcidid><orcidid>https://orcid.org/0000-0002-2714-7737</orcidid><orcidid>https://orcid.org/0000-0002-3356-2486</orcidid></search><sort><creationdate>202208</creationdate><title>Sulfide Chalcopyrite Solar Cells––Are They the Same as Selenides with a Wider Bandgap?</title><author>Siebentritt, Susanne ; Lomuscio, Alberto ; Adeleye, Damilola ; Sood, Mohit ; Dwivedi, Aradhana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-4491c31d6bb4e0044ea502af78dcca6c2ca0f348a69eb2df077017410c7ffacd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chalcopyrite</topic><topic>defects</topic><topic>Energy gap</topic><topic>Phase diagrams</topic><topic>Photovoltaic cells</topic><topic>recombination</topic><topic>Selenides</topic><topic>solar cell</topic><topic>Solar cells</topic><topic>tail states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siebentritt, Susanne</creatorcontrib><creatorcontrib>Lomuscio, Alberto</creatorcontrib><creatorcontrib>Adeleye, Damilola</creatorcontrib><creatorcontrib>Sood, Mohit</creatorcontrib><creatorcontrib>Dwivedi, Aradhana</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siebentritt, Susanne</au><au>Lomuscio, Alberto</au><au>Adeleye, Damilola</au><au>Sood, Mohit</au><au>Dwivedi, Aradhana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfide Chalcopyrite Solar Cells––Are They the Same as Selenides with a Wider Bandgap?</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><date>2022-08</date><risdate>2022</risdate><volume>16</volume><issue>8</issue><epage>n/a</epage><issn>1862-6254</issn><eissn>1862-6270</eissn><abstract>Sulfide chalcopyrite solar cells are receiving renewed interest since they have reached a certified efficiency above 15%. Due to their wider bandgap, they are interesting candidates for top cells in tandem applications. They share many properties with the much deeper studied selenide chalcopyrites, but also some important differences. While the structure of shallow and deep defects appears very similar, the phase diagram is different with a much smaller existence range of Cu‐poor CuInS2. The problematic character of the surface of material grown under Cu excess is present in both sulfides and selenides. Both materials show increased tail states when grown Cu‐poor. To achieve sufficient bulk quality of sulfide absorbers, higher growth temperatures and a higher supply of sodium appear to be necessary.
The bulk and surface properties of sulfide chalcopyrite semiconductors, relevant for their use as top cells in tandem solar cells are reviewed.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssr.202200126</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6522-1427</orcidid><orcidid>https://orcid.org/0000-0001-6359-9100</orcidid><orcidid>https://orcid.org/0000-0002-2714-7737</orcidid><orcidid>https://orcid.org/0000-0002-3356-2486</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6254 |
ispartof | Physica status solidi. PSS-RRL. Rapid research letters, 2022-08, Vol.16 (8), p.n/a |
issn | 1862-6254 1862-6270 |
language | eng |
recordid | cdi_proquest_journals_2726024341 |
source | Access via Wiley Online Library |
subjects | Chalcopyrite defects Energy gap Phase diagrams Photovoltaic cells recombination Selenides solar cell Solar cells tail states |
title | Sulfide Chalcopyrite Solar Cells––Are They the Same as Selenides with a Wider Bandgap? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A07%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfide%20Chalcopyrite%20Solar%20Cells%E2%80%93%E2%80%93Are%20They%20the%20Same%20as%20Selenides%20with%20a%20Wider%20Bandgap?&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Siebentritt,%20Susanne&rft.date=2022-08&rft.volume=16&rft.issue=8&rft.epage=n/a&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.202200126&rft_dat=%3Cproquest_cross%3E2726024341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726024341&rft_id=info:pmid/&rfr_iscdi=true |