Enhancing the Elastocaloric Strength by Combining Positive and Negative Elastocaloric Effects

Solid‐state refrigeration has received widespread attention recently because of its high refrigeration efficiency and environmental protection. Compared with other solid‐state refrigeration technologies, elastocaloric effects have great application potential. However, the current temperature change...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. PSS-RRL. Rapid research letters 2022-08, Vol.16 (8), p.n/a
Hauptverfasser: Zhu, Wenxuan, Shi, Xiaoming, Gao, Rongzhen, Wang, Jing, Zhang, Guangzu, Xu, Jiwen, Huang, Houbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page
container_title Physica status solidi. PSS-RRL. Rapid research letters
container_volume 16
creator Zhu, Wenxuan
Shi, Xiaoming
Gao, Rongzhen
Wang, Jing
Zhang, Guangzu
Xu, Jiwen
Huang, Houbing
description Solid‐state refrigeration has received widespread attention recently because of its high refrigeration efficiency and environmental protection. Compared with other solid‐state refrigeration technologies, elastocaloric effects have great application potential. However, the current temperature change of elastocaloric effects is still low. This work explores the change law of phase transition temperature of ferroelectric materials by applying the external stress based on the thermodynamic calculation. It can be found that ferroelectric materials’ positive and negative elastocaloric effects can peak at the same temperature, so here a device to combine the positive and negative elastocaloric effects of Ba0.7Sr0.3TiO3 and BaZr0.015Ti0.085O3 is designed. This device can achieve a ΔT of 3.18 K near room temperature under applied stress of 200 MPa, which is twice as large as that of 1.4 K in BCZTO‐Fe under the same stress condition. And it can be raised to 4.1 K after applying an electric field of 10 MV m−1. It is the first time to combine positive and negative elastocaloric effects to achieve high cooling near room temperature, which provides a new solution for efficient cooling near room temperature. A device to combine the positive and negative elastocaloric effects of Ba0.7Sr0.3TiO3 and BaZr0.015Ti0.085O3 is designed. This device can achieve a ΔT of 3.18 K near room temperature under applied stress of 200 MPa and it can be raised to 4.1 K after applying an electric field of 10 MV m−1.
doi_str_mv 10.1002/pssr.202200183
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726021625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726021625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3173-acee5501149dd7d13929d91f5452fee313269900f7027dcfd075fd2ca0f4ec523</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKtXzwuet04mm01zlLJ-QNFi9SghzUe7Zbtbk63Sf-_WSsWTp5mB95lhHkIuKQwoAF6vYwwDBEQAOmRHpEeHOaY5Cjg-9Dw7JWcxLgG4FBnrkbeiXujalPU8aRcuKSod28boqgmlSaZtcPW8XSSzbTJqVrOy3uUmTSzb8sMlurbJo5vr7-EvWXjvTBvPyYnXVXQXP7VPXm-Ll9F9On66exjdjFPDqGCpNs5xDpRm0lphKZMoraSeZxy9c4wyzKUE8AJQWOMtCO4tGg0-c4Yj65Or_d51aN43LrZq2WxC3Z1UKDAHpN3rXWqwT5nQdK6cV-tQrnTYKgpqp1DtFKqDwg6Qe-CzrNz2n7SaTKfPv-wXxvp2QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726021625</pqid></control><display><type>article</type><title>Enhancing the Elastocaloric Strength by Combining Positive and Negative Elastocaloric Effects</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhu, Wenxuan ; Shi, Xiaoming ; Gao, Rongzhen ; Wang, Jing ; Zhang, Guangzu ; Xu, Jiwen ; Huang, Houbing</creator><creatorcontrib>Zhu, Wenxuan ; Shi, Xiaoming ; Gao, Rongzhen ; Wang, Jing ; Zhang, Guangzu ; Xu, Jiwen ; Huang, Houbing</creatorcontrib><description>Solid‐state refrigeration has received widespread attention recently because of its high refrigeration efficiency and environmental protection. Compared with other solid‐state refrigeration technologies, elastocaloric effects have great application potential. However, the current temperature change of elastocaloric effects is still low. This work explores the change law of phase transition temperature of ferroelectric materials by applying the external stress based on the thermodynamic calculation. It can be found that ferroelectric materials’ positive and negative elastocaloric effects can peak at the same temperature, so here a device to combine the positive and negative elastocaloric effects of Ba0.7Sr0.3TiO3 and BaZr0.015Ti0.085O3 is designed. This device can achieve a ΔT of 3.18 K near room temperature under applied stress of 200 MPa, which is twice as large as that of 1.4 K in BCZTO‐Fe under the same stress condition. And it can be raised to 4.1 K after applying an electric field of 10 MV m−1. It is the first time to combine positive and negative elastocaloric effects to achieve high cooling near room temperature, which provides a new solution for efficient cooling near room temperature. A device to combine the positive and negative elastocaloric effects of Ba0.7Sr0.3TiO3 and BaZr0.015Ti0.085O3 is designed. This device can achieve a ΔT of 3.18 K near room temperature under applied stress of 200 MPa and it can be raised to 4.1 K after applying an electric field of 10 MV m−1.</description><identifier>ISSN: 1862-6254</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.202200183</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ba0.7Sr0.3TiO3 ; BaZr0.015Ti0.085O3 ; Cooling ; elastocaloric ; Electric fields ; Environmental protection ; Ferroelectric materials ; Ferroelectricity ; Phase transitions ; Refrigeration ; Room temperature ; solid-state refrigeration ; thermodynamic calculation ; Transition temperature</subject><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2022-08, Vol.16 (8), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3173-acee5501149dd7d13929d91f5452fee313269900f7027dcfd075fd2ca0f4ec523</citedby><cites>FETCH-LOGICAL-c3173-acee5501149dd7d13929d91f5452fee313269900f7027dcfd075fd2ca0f4ec523</cites><orcidid>0000-0002-8006-3495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssr.202200183$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssr.202200183$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Zhu, Wenxuan</creatorcontrib><creatorcontrib>Shi, Xiaoming</creatorcontrib><creatorcontrib>Gao, Rongzhen</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Zhang, Guangzu</creatorcontrib><creatorcontrib>Xu, Jiwen</creatorcontrib><creatorcontrib>Huang, Houbing</creatorcontrib><title>Enhancing the Elastocaloric Strength by Combining Positive and Negative Elastocaloric Effects</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><description>Solid‐state refrigeration has received widespread attention recently because of its high refrigeration efficiency and environmental protection. Compared with other solid‐state refrigeration technologies, elastocaloric effects have great application potential. However, the current temperature change of elastocaloric effects is still low. This work explores the change law of phase transition temperature of ferroelectric materials by applying the external stress based on the thermodynamic calculation. It can be found that ferroelectric materials’ positive and negative elastocaloric effects can peak at the same temperature, so here a device to combine the positive and negative elastocaloric effects of Ba0.7Sr0.3TiO3 and BaZr0.015Ti0.085O3 is designed. This device can achieve a ΔT of 3.18 K near room temperature under applied stress of 200 MPa, which is twice as large as that of 1.4 K in BCZTO‐Fe under the same stress condition. And it can be raised to 4.1 K after applying an electric field of 10 MV m−1. It is the first time to combine positive and negative elastocaloric effects to achieve high cooling near room temperature, which provides a new solution for efficient cooling near room temperature. A device to combine the positive and negative elastocaloric effects of Ba0.7Sr0.3TiO3 and BaZr0.015Ti0.085O3 is designed. This device can achieve a ΔT of 3.18 K near room temperature under applied stress of 200 MPa and it can be raised to 4.1 K after applying an electric field of 10 MV m−1.</description><subject>Ba0.7Sr0.3TiO3</subject><subject>BaZr0.015Ti0.085O3</subject><subject>Cooling</subject><subject>elastocaloric</subject><subject>Electric fields</subject><subject>Environmental protection</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Phase transitions</subject><subject>Refrigeration</subject><subject>Room temperature</subject><subject>solid-state refrigeration</subject><subject>thermodynamic calculation</subject><subject>Transition temperature</subject><issn>1862-6254</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKtXzwuet04mm01zlLJ-QNFi9SghzUe7Zbtbk63Sf-_WSsWTp5mB95lhHkIuKQwoAF6vYwwDBEQAOmRHpEeHOaY5Cjg-9Dw7JWcxLgG4FBnrkbeiXujalPU8aRcuKSod28boqgmlSaZtcPW8XSSzbTJqVrOy3uUmTSzb8sMlurbJo5vr7-EvWXjvTBvPyYnXVXQXP7VPXm-Ll9F9On66exjdjFPDqGCpNs5xDpRm0lphKZMoraSeZxy9c4wyzKUE8AJQWOMtCO4tGg0-c4Yj65Or_d51aN43LrZq2WxC3Z1UKDAHpN3rXWqwT5nQdK6cV-tQrnTYKgpqp1DtFKqDwg6Qe-CzrNz2n7SaTKfPv-wXxvp2QA</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Zhu, Wenxuan</creator><creator>Shi, Xiaoming</creator><creator>Gao, Rongzhen</creator><creator>Wang, Jing</creator><creator>Zhang, Guangzu</creator><creator>Xu, Jiwen</creator><creator>Huang, Houbing</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8006-3495</orcidid></search><sort><creationdate>202208</creationdate><title>Enhancing the Elastocaloric Strength by Combining Positive and Negative Elastocaloric Effects</title><author>Zhu, Wenxuan ; Shi, Xiaoming ; Gao, Rongzhen ; Wang, Jing ; Zhang, Guangzu ; Xu, Jiwen ; Huang, Houbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3173-acee5501149dd7d13929d91f5452fee313269900f7027dcfd075fd2ca0f4ec523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ba0.7Sr0.3TiO3</topic><topic>BaZr0.015Ti0.085O3</topic><topic>Cooling</topic><topic>elastocaloric</topic><topic>Electric fields</topic><topic>Environmental protection</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Phase transitions</topic><topic>Refrigeration</topic><topic>Room temperature</topic><topic>solid-state refrigeration</topic><topic>thermodynamic calculation</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Wenxuan</creatorcontrib><creatorcontrib>Shi, Xiaoming</creatorcontrib><creatorcontrib>Gao, Rongzhen</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Zhang, Guangzu</creatorcontrib><creatorcontrib>Xu, Jiwen</creatorcontrib><creatorcontrib>Huang, Houbing</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Wenxuan</au><au>Shi, Xiaoming</au><au>Gao, Rongzhen</au><au>Wang, Jing</au><au>Zhang, Guangzu</au><au>Xu, Jiwen</au><au>Huang, Houbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the Elastocaloric Strength by Combining Positive and Negative Elastocaloric Effects</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><date>2022-08</date><risdate>2022</risdate><volume>16</volume><issue>8</issue><epage>n/a</epage><issn>1862-6254</issn><eissn>1862-6270</eissn><abstract>Solid‐state refrigeration has received widespread attention recently because of its high refrigeration efficiency and environmental protection. Compared with other solid‐state refrigeration technologies, elastocaloric effects have great application potential. However, the current temperature change of elastocaloric effects is still low. This work explores the change law of phase transition temperature of ferroelectric materials by applying the external stress based on the thermodynamic calculation. It can be found that ferroelectric materials’ positive and negative elastocaloric effects can peak at the same temperature, so here a device to combine the positive and negative elastocaloric effects of Ba0.7Sr0.3TiO3 and BaZr0.015Ti0.085O3 is designed. This device can achieve a ΔT of 3.18 K near room temperature under applied stress of 200 MPa, which is twice as large as that of 1.4 K in BCZTO‐Fe under the same stress condition. And it can be raised to 4.1 K after applying an electric field of 10 MV m−1. It is the first time to combine positive and negative elastocaloric effects to achieve high cooling near room temperature, which provides a new solution for efficient cooling near room temperature. A device to combine the positive and negative elastocaloric effects of Ba0.7Sr0.3TiO3 and BaZr0.015Ti0.085O3 is designed. This device can achieve a ΔT of 3.18 K near room temperature under applied stress of 200 MPa and it can be raised to 4.1 K after applying an electric field of 10 MV m−1.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssr.202200183</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8006-3495</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6254
ispartof Physica status solidi. PSS-RRL. Rapid research letters, 2022-08, Vol.16 (8), p.n/a
issn 1862-6254
1862-6270
language eng
recordid cdi_proquest_journals_2726021625
source Wiley Online Library Journals Frontfile Complete
subjects Ba0.7Sr0.3TiO3
BaZr0.015Ti0.085O3
Cooling
elastocaloric
Electric fields
Environmental protection
Ferroelectric materials
Ferroelectricity
Phase transitions
Refrigeration
Room temperature
solid-state refrigeration
thermodynamic calculation
Transition temperature
title Enhancing the Elastocaloric Strength by Combining Positive and Negative Elastocaloric Effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20Elastocaloric%20Strength%20by%20Combining%20Positive%20and%20Negative%20Elastocaloric%20Effects&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Zhu,%20Wenxuan&rft.date=2022-08&rft.volume=16&rft.issue=8&rft.epage=n/a&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.202200183&rft_dat=%3Cproquest_cross%3E2726021625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726021625&rft_id=info:pmid/&rfr_iscdi=true