Experimental Evaluation of 3D Heat Flow Using Magneto‐Thermoelectric Effects in a Ferromagnetic Nanowire

Herein, a systematic measurement of magneto‐thermoelectric voltage induced in a ferromagnetic permalloy nanowire under the operation of a laterally configured nanospintronic device is performed. It is shown that the angular dependences of the magneto‐thermoelectric signals with various probe configu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. PSS-RRL. Rapid research letters 2022-05, Vol.16 (5), p.n/a
Hauptverfasser: Kamruzzaman, Md, Hu, Shaojie, Ohnishi, Kohei, Kimura, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Physica status solidi. PSS-RRL. Rapid research letters
container_volume 16
creator Kamruzzaman, Md
Hu, Shaojie
Ohnishi, Kohei
Kimura, Takashi
description Herein, a systematic measurement of magneto‐thermoelectric voltage induced in a ferromagnetic permalloy nanowire under the operation of a laterally configured nanospintronic device is performed. It is shown that the angular dependences of the magneto‐thermoelectric signals with various probe configurations can be quantitatively understood by the combination of the magneto‐Seebeck and anomalous Nernst effects. Surprisingly, the contribution of the transverse magneto‐Seebeck effect becomes significant in a certain probe configuration, indicating the importance of the transverse heat flow. These results allow us to analyze the 3D distribution of the heat flow inside the permalloy nanowire. The present demonstration indicates that the magneto‐thermoelectric effect is a powerful and reliable tool for analyzing the heat distribution in nanostructured devices. Magneto‐thermoelectric effects in a ferromagnetic nanowire enable us to evaluate the 3D heat flow inside the ferromagnetic nanowire and provide the evidence for the significant heat flow through the substrate.
doi_str_mv 10.1002/pssr.202100608
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726018491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726018491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3388-1161d758e71475d1316a64e1a2efdb7b1e19eb80a59f618d387020bb959397423</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqWwZW2JdYofSewsEaQUqTxE27XlJJOSKo2DnVK64xP4Rr4El6KyZDV3NPfOaA5C55QMKCHssnXODhhhvomJPEA9KmMWxEyQw72OwmN04tyCkCgRIe-hRfregq2W0HS6xumbrle6q0yDTYn5DR6B7vCwNms8c1Uzx_d63kBnvj4-py9glwZqyDtb5TgtS68crhqs8RCsNcsfqx896MasKwun6KjUtYOz39pHs2E6vR4F48fbu-urcZBzLmVAaUwLEUkQNBRRQTmNdRwC1QzKIhMZBZpAJomOkjKmsuBSEEayLIkS7n9ivI8udntba15X4Dq1MCvb-JOKCRYTKsOEetdg58qt8eCgVK3HoO1GUaK2PNWWp9rz9IFkF1hXNWz-caunyeT5L_sN01x6kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726018491</pqid></control><display><type>article</type><title>Experimental Evaluation of 3D Heat Flow Using Magneto‐Thermoelectric Effects in a Ferromagnetic Nanowire</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kamruzzaman, Md ; Hu, Shaojie ; Ohnishi, Kohei ; Kimura, Takashi</creator><creatorcontrib>Kamruzzaman, Md ; Hu, Shaojie ; Ohnishi, Kohei ; Kimura, Takashi</creatorcontrib><description>Herein, a systematic measurement of magneto‐thermoelectric voltage induced in a ferromagnetic permalloy nanowire under the operation of a laterally configured nanospintronic device is performed. It is shown that the angular dependences of the magneto‐thermoelectric signals with various probe configurations can be quantitatively understood by the combination of the magneto‐Seebeck and anomalous Nernst effects. Surprisingly, the contribution of the transverse magneto‐Seebeck effect becomes significant in a certain probe configuration, indicating the importance of the transverse heat flow. These results allow us to analyze the 3D distribution of the heat flow inside the permalloy nanowire. The present demonstration indicates that the magneto‐thermoelectric effect is a powerful and reliable tool for analyzing the heat distribution in nanostructured devices. Magneto‐thermoelectric effects in a ferromagnetic nanowire enable us to evaluate the 3D heat flow inside the ferromagnetic nanowire and provide the evidence for the significant heat flow through the substrate.</description><identifier>ISSN: 1862-6254</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.202100608</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>anomalous Nernst effect ; Configurations ; Ferromagnetism ; Ferrous alloys ; Heat distribution ; Heat transfer ; Heat transmission ; Magnetic alloys ; magneto-Seebeck effect ; Nanowires ; Seebeck effect ; spintronic devices ; Thermoelectricity ; Three dimensional flow</subject><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2022-05, Vol.16 (5), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3388-1161d758e71475d1316a64e1a2efdb7b1e19eb80a59f618d387020bb959397423</cites><orcidid>0000-0002-1253-2130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssr.202100608$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssr.202100608$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kamruzzaman, Md</creatorcontrib><creatorcontrib>Hu, Shaojie</creatorcontrib><creatorcontrib>Ohnishi, Kohei</creatorcontrib><creatorcontrib>Kimura, Takashi</creatorcontrib><title>Experimental Evaluation of 3D Heat Flow Using Magneto‐Thermoelectric Effects in a Ferromagnetic Nanowire</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><description>Herein, a systematic measurement of magneto‐thermoelectric voltage induced in a ferromagnetic permalloy nanowire under the operation of a laterally configured nanospintronic device is performed. It is shown that the angular dependences of the magneto‐thermoelectric signals with various probe configurations can be quantitatively understood by the combination of the magneto‐Seebeck and anomalous Nernst effects. Surprisingly, the contribution of the transverse magneto‐Seebeck effect becomes significant in a certain probe configuration, indicating the importance of the transverse heat flow. These results allow us to analyze the 3D distribution of the heat flow inside the permalloy nanowire. The present demonstration indicates that the magneto‐thermoelectric effect is a powerful and reliable tool for analyzing the heat distribution in nanostructured devices. Magneto‐thermoelectric effects in a ferromagnetic nanowire enable us to evaluate the 3D heat flow inside the ferromagnetic nanowire and provide the evidence for the significant heat flow through the substrate.</description><subject>anomalous Nernst effect</subject><subject>Configurations</subject><subject>Ferromagnetism</subject><subject>Ferrous alloys</subject><subject>Heat distribution</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Magnetic alloys</subject><subject>magneto-Seebeck effect</subject><subject>Nanowires</subject><subject>Seebeck effect</subject><subject>spintronic devices</subject><subject>Thermoelectricity</subject><subject>Three dimensional flow</subject><issn>1862-6254</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqWwZW2JdYofSewsEaQUqTxE27XlJJOSKo2DnVK64xP4Rr4El6KyZDV3NPfOaA5C55QMKCHssnXODhhhvomJPEA9KmMWxEyQw72OwmN04tyCkCgRIe-hRfregq2W0HS6xumbrle6q0yDTYn5DR6B7vCwNms8c1Uzx_d63kBnvj4-py9glwZqyDtb5TgtS68crhqs8RCsNcsfqx896MasKwun6KjUtYOz39pHs2E6vR4F48fbu-urcZBzLmVAaUwLEUkQNBRRQTmNdRwC1QzKIhMZBZpAJomOkjKmsuBSEEayLIkS7n9ivI8udntba15X4Dq1MCvb-JOKCRYTKsOEetdg58qt8eCgVK3HoO1GUaK2PNWWp9rz9IFkF1hXNWz-caunyeT5L_sN01x6kg</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Kamruzzaman, Md</creator><creator>Hu, Shaojie</creator><creator>Ohnishi, Kohei</creator><creator>Kimura, Takashi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1253-2130</orcidid></search><sort><creationdate>202205</creationdate><title>Experimental Evaluation of 3D Heat Flow Using Magneto‐Thermoelectric Effects in a Ferromagnetic Nanowire</title><author>Kamruzzaman, Md ; Hu, Shaojie ; Ohnishi, Kohei ; Kimura, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3388-1161d758e71475d1316a64e1a2efdb7b1e19eb80a59f618d387020bb959397423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>anomalous Nernst effect</topic><topic>Configurations</topic><topic>Ferromagnetism</topic><topic>Ferrous alloys</topic><topic>Heat distribution</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Magnetic alloys</topic><topic>magneto-Seebeck effect</topic><topic>Nanowires</topic><topic>Seebeck effect</topic><topic>spintronic devices</topic><topic>Thermoelectricity</topic><topic>Three dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamruzzaman, Md</creatorcontrib><creatorcontrib>Hu, Shaojie</creatorcontrib><creatorcontrib>Ohnishi, Kohei</creatorcontrib><creatorcontrib>Kimura, Takashi</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamruzzaman, Md</au><au>Hu, Shaojie</au><au>Ohnishi, Kohei</au><au>Kimura, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Evaluation of 3D Heat Flow Using Magneto‐Thermoelectric Effects in a Ferromagnetic Nanowire</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><date>2022-05</date><risdate>2022</risdate><volume>16</volume><issue>5</issue><epage>n/a</epage><issn>1862-6254</issn><eissn>1862-6270</eissn><abstract>Herein, a systematic measurement of magneto‐thermoelectric voltage induced in a ferromagnetic permalloy nanowire under the operation of a laterally configured nanospintronic device is performed. It is shown that the angular dependences of the magneto‐thermoelectric signals with various probe configurations can be quantitatively understood by the combination of the magneto‐Seebeck and anomalous Nernst effects. Surprisingly, the contribution of the transverse magneto‐Seebeck effect becomes significant in a certain probe configuration, indicating the importance of the transverse heat flow. These results allow us to analyze the 3D distribution of the heat flow inside the permalloy nanowire. The present demonstration indicates that the magneto‐thermoelectric effect is a powerful and reliable tool for analyzing the heat distribution in nanostructured devices. Magneto‐thermoelectric effects in a ferromagnetic nanowire enable us to evaluate the 3D heat flow inside the ferromagnetic nanowire and provide the evidence for the significant heat flow through the substrate.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssr.202100608</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1253-2130</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6254
ispartof Physica status solidi. PSS-RRL. Rapid research letters, 2022-05, Vol.16 (5), p.n/a
issn 1862-6254
1862-6270
language eng
recordid cdi_proquest_journals_2726018491
source Wiley Online Library Journals Frontfile Complete
subjects anomalous Nernst effect
Configurations
Ferromagnetism
Ferrous alloys
Heat distribution
Heat transfer
Heat transmission
Magnetic alloys
magneto-Seebeck effect
Nanowires
Seebeck effect
spintronic devices
Thermoelectricity
Three dimensional flow
title Experimental Evaluation of 3D Heat Flow Using Magneto‐Thermoelectric Effects in a Ferromagnetic Nanowire
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A35%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Evaluation%20of%203D%20Heat%20Flow%20Using%20Magneto%E2%80%90Thermoelectric%20Effects%20in%20a%20Ferromagnetic%20Nanowire&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Kamruzzaman,%20Md&rft.date=2022-05&rft.volume=16&rft.issue=5&rft.epage=n/a&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.202100608&rft_dat=%3Cproquest_cross%3E2726018491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726018491&rft_id=info:pmid/&rfr_iscdi=true