Elevated Lithium Ion Regulation by a “Natural Silk” Modified Separator for High‐Performance Lithium Metal Anode
Metallic lithium anode has long stood as the “holy grail” in the field of secondary batteries for its high theoretical specific capacity and low electrochemical potential. But its edge is blunted by the inherent uncontrolled lithium dendrite growth that can curtail the cycle life and raise safety co...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-05, Vol.31 (18), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 18 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Li, Xiang Yuan, Lixia Liu, Dezhong Liao, Mengyi Chen, Jie Yuan, Kai Xiang, Jingwei Li, Zhen Huang, Yunhui |
description | Metallic lithium anode has long stood as the “holy grail” in the field of secondary batteries for its high theoretical specific capacity and low electrochemical potential. But its edge is blunted by the inherent uncontrolled lithium dendrite growth that can curtail the cycle life and raise safety concerns. In this work, a functional modification layer from a derivant of natural silk is developed to protect lithium anode via a facile automatic transfer route. Via offering abundant functional group sites, the Li‐ion flux on the anode surface is made uniform efficiently. The silk fibroin‐based modification layer also contributes to the in situ formation of a Li3N‐rich solid electrolyte interphase film on the lithium anode. Consequently, a high‐performance lithium metal anode with dendrite‐free morphology and significantly enhanced cycle stability is achieved: when paired with LiFePO4 cathodes, the full cell achieves a long‐term cycling stability of 3000 cycles at 5 C; when paired with sulfur cathodes (5 mgsulfur cm−2), a long lifespan for over 400 cycles at 1 C is achieved. This work offers a facile and practical approach for the interface modification of the high‐performance lithium anode and as well as provides a new perspective for the application of biomass‐based materials in advanced batteries.
A multifunctional “nature silk” modified separator is developed for uniform Li ion transportation on the anode surface and benefit the formation of a highly Li‐ion conductive solid electrolyte interphase. With the modified separator, the Li–LiFePO4 cell can achieve a long lifespan for over 3000 cycles at 5 C and a high‐rate capability up to even 30 C. |
doi_str_mv | 10.1002/adfm.202100537 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726016926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726016926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-4485821480bb45d67658aa32cc61ab9ae703da94445b6b79c0f0381bc0c974323</originalsourceid><addsrcrecordid>eNqFkM1OAjEUhRujiYhuXTdxDfZv2pklQRASUCOauGs6nQ4U5wc7Mxp2PIIPoC_Hk1iCwaWLm3tPcr57bw4Alxh1MULkWiVp3iWIeBFQcQRamGPeoYiEx4cZv5yCs6paIoSFoKwFmkFm3lVtEjix9cI2ORyXBXw08yZTtfVjvIYKbjdfd6punMrgzGav2803nJaJTa3nZmalnKpLB1NfIztfbDefD8Z5latCm8Piqak93yvKxJyDk1Rllbn47W3wPBw89Uedyf3tuN-bdDT1_3UYC4OQYBaiOGZBwgUPQqUo0ZpjFUfKCEQTFTHGgpjHItIoRTTEsUY6EowS2gZX-70rV741pqrlsmxc4U9KIghHmEeEe1d379KurCpnUrlyNlduLTGSu2jlLlp5iNYD0R74sJlZ_-OWvZvh9I_9AaPTf38</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726016926</pqid></control><display><type>article</type><title>Elevated Lithium Ion Regulation by a “Natural Silk” Modified Separator for High‐Performance Lithium Metal Anode</title><source>Access via Wiley Online Library</source><creator>Li, Xiang ; Yuan, Lixia ; Liu, Dezhong ; Liao, Mengyi ; Chen, Jie ; Yuan, Kai ; Xiang, Jingwei ; Li, Zhen ; Huang, Yunhui</creator><creatorcontrib>Li, Xiang ; Yuan, Lixia ; Liu, Dezhong ; Liao, Mengyi ; Chen, Jie ; Yuan, Kai ; Xiang, Jingwei ; Li, Zhen ; Huang, Yunhui</creatorcontrib><description>Metallic lithium anode has long stood as the “holy grail” in the field of secondary batteries for its high theoretical specific capacity and low electrochemical potential. But its edge is blunted by the inherent uncontrolled lithium dendrite growth that can curtail the cycle life and raise safety concerns. In this work, a functional modification layer from a derivant of natural silk is developed to protect lithium anode via a facile automatic transfer route. Via offering abundant functional group sites, the Li‐ion flux on the anode surface is made uniform efficiently. The silk fibroin‐based modification layer also contributes to the in situ formation of a Li3N‐rich solid electrolyte interphase film on the lithium anode. Consequently, a high‐performance lithium metal anode with dendrite‐free morphology and significantly enhanced cycle stability is achieved: when paired with LiFePO4 cathodes, the full cell achieves a long‐term cycling stability of 3000 cycles at 5 C; when paired with sulfur cathodes (5 mgsulfur cm−2), a long lifespan for over 400 cycles at 1 C is achieved. This work offers a facile and practical approach for the interface modification of the high‐performance lithium anode and as well as provides a new perspective for the application of biomass‐based materials in advanced batteries.
A multifunctional “nature silk” modified separator is developed for uniform Li ion transportation on the anode surface and benefit the formation of a highly Li‐ion conductive solid electrolyte interphase. With the modified separator, the Li–LiFePO4 cell can achieve a long lifespan for over 3000 cycles at 5 C and a high‐rate capability up to even 30 C.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202100537</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anodic protection ; Cathodes ; Dendritic structure ; Electrochemical potential ; Functional groups ; Ion flux ; Lithium ; lithium anode ; Lithium ions ; lithium metal batteries ; Materials science ; polyvinyl alcohol ; separator modification ; Separators ; Silk ; Silk fibroin ; Solid electrolytes ; Stability ; Storage batteries</subject><ispartof>Advanced functional materials, 2021-05, Vol.31 (18), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-4485821480bb45d67658aa32cc61ab9ae703da94445b6b79c0f0381bc0c974323</citedby><cites>FETCH-LOGICAL-c3177-4485821480bb45d67658aa32cc61ab9ae703da94445b6b79c0f0381bc0c974323</cites><orcidid>0000-0003-1687-1938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202100537$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202100537$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Yuan, Lixia</creatorcontrib><creatorcontrib>Liu, Dezhong</creatorcontrib><creatorcontrib>Liao, Mengyi</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Yuan, Kai</creatorcontrib><creatorcontrib>Xiang, Jingwei</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><title>Elevated Lithium Ion Regulation by a “Natural Silk” Modified Separator for High‐Performance Lithium Metal Anode</title><title>Advanced functional materials</title><description>Metallic lithium anode has long stood as the “holy grail” in the field of secondary batteries for its high theoretical specific capacity and low electrochemical potential. But its edge is blunted by the inherent uncontrolled lithium dendrite growth that can curtail the cycle life and raise safety concerns. In this work, a functional modification layer from a derivant of natural silk is developed to protect lithium anode via a facile automatic transfer route. Via offering abundant functional group sites, the Li‐ion flux on the anode surface is made uniform efficiently. The silk fibroin‐based modification layer also contributes to the in situ formation of a Li3N‐rich solid electrolyte interphase film on the lithium anode. Consequently, a high‐performance lithium metal anode with dendrite‐free morphology and significantly enhanced cycle stability is achieved: when paired with LiFePO4 cathodes, the full cell achieves a long‐term cycling stability of 3000 cycles at 5 C; when paired with sulfur cathodes (5 mgsulfur cm−2), a long lifespan for over 400 cycles at 1 C is achieved. This work offers a facile and practical approach for the interface modification of the high‐performance lithium anode and as well as provides a new perspective for the application of biomass‐based materials in advanced batteries.
A multifunctional “nature silk” modified separator is developed for uniform Li ion transportation on the anode surface and benefit the formation of a highly Li‐ion conductive solid electrolyte interphase. With the modified separator, the Li–LiFePO4 cell can achieve a long lifespan for over 3000 cycles at 5 C and a high‐rate capability up to even 30 C.</description><subject>Anodic protection</subject><subject>Cathodes</subject><subject>Dendritic structure</subject><subject>Electrochemical potential</subject><subject>Functional groups</subject><subject>Ion flux</subject><subject>Lithium</subject><subject>lithium anode</subject><subject>Lithium ions</subject><subject>lithium metal batteries</subject><subject>Materials science</subject><subject>polyvinyl alcohol</subject><subject>separator modification</subject><subject>Separators</subject><subject>Silk</subject><subject>Silk fibroin</subject><subject>Solid electrolytes</subject><subject>Stability</subject><subject>Storage batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OAjEUhRujiYhuXTdxDfZv2pklQRASUCOauGs6nQ4U5wc7Mxp2PIIPoC_Hk1iCwaWLm3tPcr57bw4Alxh1MULkWiVp3iWIeBFQcQRamGPeoYiEx4cZv5yCs6paIoSFoKwFmkFm3lVtEjix9cI2ORyXBXw08yZTtfVjvIYKbjdfd6punMrgzGav2803nJaJTa3nZmalnKpLB1NfIztfbDefD8Z5latCm8Piqak93yvKxJyDk1Rllbn47W3wPBw89Uedyf3tuN-bdDT1_3UYC4OQYBaiOGZBwgUPQqUo0ZpjFUfKCEQTFTHGgpjHItIoRTTEsUY6EowS2gZX-70rV741pqrlsmxc4U9KIghHmEeEe1d379KurCpnUrlyNlduLTGSu2jlLlp5iNYD0R74sJlZ_-OWvZvh9I_9AaPTf38</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Li, Xiang</creator><creator>Yuan, Lixia</creator><creator>Liu, Dezhong</creator><creator>Liao, Mengyi</creator><creator>Chen, Jie</creator><creator>Yuan, Kai</creator><creator>Xiang, Jingwei</creator><creator>Li, Zhen</creator><creator>Huang, Yunhui</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1687-1938</orcidid></search><sort><creationdate>20210501</creationdate><title>Elevated Lithium Ion Regulation by a “Natural Silk” Modified Separator for High‐Performance Lithium Metal Anode</title><author>Li, Xiang ; Yuan, Lixia ; Liu, Dezhong ; Liao, Mengyi ; Chen, Jie ; Yuan, Kai ; Xiang, Jingwei ; Li, Zhen ; Huang, Yunhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-4485821480bb45d67658aa32cc61ab9ae703da94445b6b79c0f0381bc0c974323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodic protection</topic><topic>Cathodes</topic><topic>Dendritic structure</topic><topic>Electrochemical potential</topic><topic>Functional groups</topic><topic>Ion flux</topic><topic>Lithium</topic><topic>lithium anode</topic><topic>Lithium ions</topic><topic>lithium metal batteries</topic><topic>Materials science</topic><topic>polyvinyl alcohol</topic><topic>separator modification</topic><topic>Separators</topic><topic>Silk</topic><topic>Silk fibroin</topic><topic>Solid electrolytes</topic><topic>Stability</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Yuan, Lixia</creatorcontrib><creatorcontrib>Liu, Dezhong</creatorcontrib><creatorcontrib>Liao, Mengyi</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Yuan, Kai</creatorcontrib><creatorcontrib>Xiang, Jingwei</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiang</au><au>Yuan, Lixia</au><au>Liu, Dezhong</au><au>Liao, Mengyi</au><au>Chen, Jie</au><au>Yuan, Kai</au><au>Xiang, Jingwei</au><au>Li, Zhen</au><au>Huang, Yunhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elevated Lithium Ion Regulation by a “Natural Silk” Modified Separator for High‐Performance Lithium Metal Anode</atitle><jtitle>Advanced functional materials</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>31</volume><issue>18</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Metallic lithium anode has long stood as the “holy grail” in the field of secondary batteries for its high theoretical specific capacity and low electrochemical potential. But its edge is blunted by the inherent uncontrolled lithium dendrite growth that can curtail the cycle life and raise safety concerns. In this work, a functional modification layer from a derivant of natural silk is developed to protect lithium anode via a facile automatic transfer route. Via offering abundant functional group sites, the Li‐ion flux on the anode surface is made uniform efficiently. The silk fibroin‐based modification layer also contributes to the in situ formation of a Li3N‐rich solid electrolyte interphase film on the lithium anode. Consequently, a high‐performance lithium metal anode with dendrite‐free morphology and significantly enhanced cycle stability is achieved: when paired with LiFePO4 cathodes, the full cell achieves a long‐term cycling stability of 3000 cycles at 5 C; when paired with sulfur cathodes (5 mgsulfur cm−2), a long lifespan for over 400 cycles at 1 C is achieved. This work offers a facile and practical approach for the interface modification of the high‐performance lithium anode and as well as provides a new perspective for the application of biomass‐based materials in advanced batteries.
A multifunctional “nature silk” modified separator is developed for uniform Li ion transportation on the anode surface and benefit the formation of a highly Li‐ion conductive solid electrolyte interphase. With the modified separator, the Li–LiFePO4 cell can achieve a long lifespan for over 3000 cycles at 5 C and a high‐rate capability up to even 30 C.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202100537</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1687-1938</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-05, Vol.31 (18), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2726016926 |
source | Access via Wiley Online Library |
subjects | Anodic protection Cathodes Dendritic structure Electrochemical potential Functional groups Ion flux Lithium lithium anode Lithium ions lithium metal batteries Materials science polyvinyl alcohol separator modification Separators Silk Silk fibroin Solid electrolytes Stability Storage batteries |
title | Elevated Lithium Ion Regulation by a “Natural Silk” Modified Separator for High‐Performance Lithium Metal Anode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A04%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elevated%20Lithium%20Ion%20Regulation%20by%20a%20%E2%80%9CNatural%20Silk%E2%80%9D%20Modified%20Separator%20for%20High%E2%80%90Performance%20Lithium%20Metal%20Anode&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Xiang&rft.date=2021-05-01&rft.volume=31&rft.issue=18&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202100537&rft_dat=%3Cproquest_cross%3E2726016926%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726016926&rft_id=info:pmid/&rfr_iscdi=true |