Integral bremsstrahlung energy as an inbuilt standard in energy‐dispersive electron probe microanalysis

To improve the accuracy of the energy‐dispersive electron probe microanalysis (EPMA EDS) without measuring the probe current, it is proposed to normalize the measured analyte net X‐ray intensity to the bremsstrahlung integral energy of the analyzed sample. The integral energy is calculated using a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:X-ray spectrometry 2022-09, Vol.51 (5-6), p.444-453
Hauptverfasser: Karmanov, Nikolay Semenovich, Kanakin, Sergei Vasilievich, Lavrent'ev, Yuri Grigorievich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 453
container_issue 5-6
container_start_page 444
container_title X-ray spectrometry
container_volume 51
creator Karmanov, Nikolay Semenovich
Kanakin, Sergei Vasilievich
Lavrent'ev, Yuri Grigorievich
description To improve the accuracy of the energy‐dispersive electron probe microanalysis (EPMA EDS) without measuring the probe current, it is proposed to normalize the measured analyte net X‐ray intensity to the bremsstrahlung integral energy of the analyzed sample. The integral energy is calculated using a modified Kramers formula, the parameters of which have been refined based on processing the spectra of single‐element samples (4 ≤ Z ≤ 83), acquired in the incident electrons energy range from 10 to 25 keV. The dependence of the bremsstrahlung integral energy on the atomic number of the sample and the incident electrons energy is obtained, and recommendations are given for calculating the mean atomic number of multicomponent samples. It is shown that even with a significant variation (within a factor of 2 or more) of the probe current or the X‐ray gathering solid angle, the use of the proposed normalization method improves the reproducibility of analysis to a value characteristic of measurements at a stable probe current and a standing solid angle. The method is recommended for the development of standardless EPMA EDS.
doi_str_mv 10.1002/xrs.3301
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726015016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726015016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2541-97e4ac2500cf2c54bcdfdf23d1fdfd15dcd25deab2f5a39f725adbbea5d457983</originalsourceid><addsrcrecordid>eNp10M1Kw0AQB_BFFKxV8BEWvHhJ3d1km-Yo4kehIPgB3pZJdlK3pJu6k6q5-Qg-o0_i1vbqaYbhx_Dnz9ipFCMphLr4DDRKUyH32ECKIk8ynRb7bCBEViQTlY0P2RHRQggppCwGzE19h_MADS8DLom6AK_N2s85egzzngNx8Nz5cu2ajlMH3kKw8bADP1_f1tEKA7l35Nhg1YXW81VoS-RLV4UWPDQ9OTpmBzU0hCe7OWTPN9dPV3fJ7P52enU5SyqlM5kUOWYQVyGqWlU6Kytb21qlVsZhpbaVVdoilKrWkBZ1rjTYskTQNtN5MUmH7Gz7N2Z4WyN1ZtGuQwxBRuVqLKQWchzV-VbFhEQBa7MKbgmhN1KYTZEmFmk2RUaabOmHa7D_15mXh8c__wtnank2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726015016</pqid></control><display><type>article</type><title>Integral bremsstrahlung energy as an inbuilt standard in energy‐dispersive electron probe microanalysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Karmanov, Nikolay Semenovich ; Kanakin, Sergei Vasilievich ; Lavrent'ev, Yuri Grigorievich</creator><creatorcontrib>Karmanov, Nikolay Semenovich ; Kanakin, Sergei Vasilievich ; Lavrent'ev, Yuri Grigorievich</creatorcontrib><description>To improve the accuracy of the energy‐dispersive electron probe microanalysis (EPMA EDS) without measuring the probe current, it is proposed to normalize the measured analyte net X‐ray intensity to the bremsstrahlung integral energy of the analyzed sample. The integral energy is calculated using a modified Kramers formula, the parameters of which have been refined based on processing the spectra of single‐element samples (4 ≤ Z ≤ 83), acquired in the incident electrons energy range from 10 to 25 keV. The dependence of the bremsstrahlung integral energy on the atomic number of the sample and the incident electrons energy is obtained, and recommendations are given for calculating the mean atomic number of multicomponent samples. It is shown that even with a significant variation (within a factor of 2 or more) of the probe current or the X‐ray gathering solid angle, the use of the proposed normalization method improves the reproducibility of analysis to a value characteristic of measurements at a stable probe current and a standing solid angle. The method is recommended for the development of standardless EPMA EDS.</description><identifier>ISSN: 0049-8246</identifier><identifier>EISSN: 1097-4539</identifier><identifier>DOI: 10.1002/xrs.3301</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Atomic properties ; Bremsstrahlung ; bremsstrahlung simulation ; Dispersion ; Electron probe microanalysis ; Energy ; EPMA EDS ; Mathematical analysis ; Parameter modification ; Quantitative analysis ; standardless analysis</subject><ispartof>X-ray spectrometry, 2022-09, Vol.51 (5-6), p.444-453</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2541-97e4ac2500cf2c54bcdfdf23d1fdfd15dcd25deab2f5a39f725adbbea5d457983</cites><orcidid>0000-0001-6515-5079 ; 0000-0003-2400-2409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fxrs.3301$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fxrs.3301$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1413,27906,27907,45556,45557</link.rule.ids></links><search><creatorcontrib>Karmanov, Nikolay Semenovich</creatorcontrib><creatorcontrib>Kanakin, Sergei Vasilievich</creatorcontrib><creatorcontrib>Lavrent'ev, Yuri Grigorievich</creatorcontrib><title>Integral bremsstrahlung energy as an inbuilt standard in energy‐dispersive electron probe microanalysis</title><title>X-ray spectrometry</title><description>To improve the accuracy of the energy‐dispersive electron probe microanalysis (EPMA EDS) without measuring the probe current, it is proposed to normalize the measured analyte net X‐ray intensity to the bremsstrahlung integral energy of the analyzed sample. The integral energy is calculated using a modified Kramers formula, the parameters of which have been refined based on processing the spectra of single‐element samples (4 ≤ Z ≤ 83), acquired in the incident electrons energy range from 10 to 25 keV. The dependence of the bremsstrahlung integral energy on the atomic number of the sample and the incident electrons energy is obtained, and recommendations are given for calculating the mean atomic number of multicomponent samples. It is shown that even with a significant variation (within a factor of 2 or more) of the probe current or the X‐ray gathering solid angle, the use of the proposed normalization method improves the reproducibility of analysis to a value characteristic of measurements at a stable probe current and a standing solid angle. The method is recommended for the development of standardless EPMA EDS.</description><subject>Atomic properties</subject><subject>Bremsstrahlung</subject><subject>bremsstrahlung simulation</subject><subject>Dispersion</subject><subject>Electron probe microanalysis</subject><subject>Energy</subject><subject>EPMA EDS</subject><subject>Mathematical analysis</subject><subject>Parameter modification</subject><subject>Quantitative analysis</subject><subject>standardless analysis</subject><issn>0049-8246</issn><issn>1097-4539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10M1Kw0AQB_BFFKxV8BEWvHhJ3d1km-Yo4kehIPgB3pZJdlK3pJu6k6q5-Qg-o0_i1vbqaYbhx_Dnz9ipFCMphLr4DDRKUyH32ECKIk8ynRb7bCBEViQTlY0P2RHRQggppCwGzE19h_MADS8DLom6AK_N2s85egzzngNx8Nz5cu2ajlMH3kKw8bADP1_f1tEKA7l35Nhg1YXW81VoS-RLV4UWPDQ9OTpmBzU0hCe7OWTPN9dPV3fJ7P52enU5SyqlM5kUOWYQVyGqWlU6Kytb21qlVsZhpbaVVdoilKrWkBZ1rjTYskTQNtN5MUmH7Gz7N2Z4WyN1ZtGuQwxBRuVqLKQWchzV-VbFhEQBa7MKbgmhN1KYTZEmFmk2RUaabOmHa7D_15mXh8c__wtnank2</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Karmanov, Nikolay Semenovich</creator><creator>Kanakin, Sergei Vasilievich</creator><creator>Lavrent'ev, Yuri Grigorievich</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6515-5079</orcidid><orcidid>https://orcid.org/0000-0003-2400-2409</orcidid></search><sort><creationdate>202209</creationdate><title>Integral bremsstrahlung energy as an inbuilt standard in energy‐dispersive electron probe microanalysis</title><author>Karmanov, Nikolay Semenovich ; Kanakin, Sergei Vasilievich ; Lavrent'ev, Yuri Grigorievich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2541-97e4ac2500cf2c54bcdfdf23d1fdfd15dcd25deab2f5a39f725adbbea5d457983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic properties</topic><topic>Bremsstrahlung</topic><topic>bremsstrahlung simulation</topic><topic>Dispersion</topic><topic>Electron probe microanalysis</topic><topic>Energy</topic><topic>EPMA EDS</topic><topic>Mathematical analysis</topic><topic>Parameter modification</topic><topic>Quantitative analysis</topic><topic>standardless analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karmanov, Nikolay Semenovich</creatorcontrib><creatorcontrib>Kanakin, Sergei Vasilievich</creatorcontrib><creatorcontrib>Lavrent'ev, Yuri Grigorievich</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>X-ray spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karmanov, Nikolay Semenovich</au><au>Kanakin, Sergei Vasilievich</au><au>Lavrent'ev, Yuri Grigorievich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integral bremsstrahlung energy as an inbuilt standard in energy‐dispersive electron probe microanalysis</atitle><jtitle>X-ray spectrometry</jtitle><date>2022-09</date><risdate>2022</risdate><volume>51</volume><issue>5-6</issue><spage>444</spage><epage>453</epage><pages>444-453</pages><issn>0049-8246</issn><eissn>1097-4539</eissn><abstract>To improve the accuracy of the energy‐dispersive electron probe microanalysis (EPMA EDS) without measuring the probe current, it is proposed to normalize the measured analyte net X‐ray intensity to the bremsstrahlung integral energy of the analyzed sample. The integral energy is calculated using a modified Kramers formula, the parameters of which have been refined based on processing the spectra of single‐element samples (4 ≤ Z ≤ 83), acquired in the incident electrons energy range from 10 to 25 keV. The dependence of the bremsstrahlung integral energy on the atomic number of the sample and the incident electrons energy is obtained, and recommendations are given for calculating the mean atomic number of multicomponent samples. It is shown that even with a significant variation (within a factor of 2 or more) of the probe current or the X‐ray gathering solid angle, the use of the proposed normalization method improves the reproducibility of analysis to a value characteristic of measurements at a stable probe current and a standing solid angle. The method is recommended for the development of standardless EPMA EDS.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/xrs.3301</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6515-5079</orcidid><orcidid>https://orcid.org/0000-0003-2400-2409</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0049-8246
ispartof X-ray spectrometry, 2022-09, Vol.51 (5-6), p.444-453
issn 0049-8246
1097-4539
language eng
recordid cdi_proquest_journals_2726015016
source Wiley Online Library Journals Frontfile Complete
subjects Atomic properties
Bremsstrahlung
bremsstrahlung simulation
Dispersion
Electron probe microanalysis
Energy
EPMA EDS
Mathematical analysis
Parameter modification
Quantitative analysis
standardless analysis
title Integral bremsstrahlung energy as an inbuilt standard in energy‐dispersive electron probe microanalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integral%20bremsstrahlung%20energy%20as%20an%20inbuilt%20standard%20in%20energy%E2%80%90dispersive%20electron%20probe%20microanalysis&rft.jtitle=X-ray%20spectrometry&rft.au=Karmanov,%20Nikolay%20Semenovich&rft.date=2022-09&rft.volume=51&rft.issue=5-6&rft.spage=444&rft.epage=453&rft.pages=444-453&rft.issn=0049-8246&rft.eissn=1097-4539&rft_id=info:doi/10.1002/xrs.3301&rft_dat=%3Cproquest_cross%3E2726015016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726015016&rft_id=info:pmid/&rfr_iscdi=true