Integral bremsstrahlung energy as an inbuilt standard in energy‐dispersive electron probe microanalysis
To improve the accuracy of the energy‐dispersive electron probe microanalysis (EPMA EDS) without measuring the probe current, it is proposed to normalize the measured analyte net X‐ray intensity to the bremsstrahlung integral energy of the analyzed sample. The integral energy is calculated using a m...
Gespeichert in:
Veröffentlicht in: | X-ray spectrometry 2022-09, Vol.51 (5-6), p.444-453 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 453 |
---|---|
container_issue | 5-6 |
container_start_page | 444 |
container_title | X-ray spectrometry |
container_volume | 51 |
creator | Karmanov, Nikolay Semenovich Kanakin, Sergei Vasilievich Lavrent'ev, Yuri Grigorievich |
description | To improve the accuracy of the energy‐dispersive electron probe microanalysis (EPMA EDS) without measuring the probe current, it is proposed to normalize the measured analyte net X‐ray intensity to the bremsstrahlung integral energy of the analyzed sample. The integral energy is calculated using a modified Kramers formula, the parameters of which have been refined based on processing the spectra of single‐element samples (4 ≤ Z ≤ 83), acquired in the incident electrons energy range from 10 to 25 keV. The dependence of the bremsstrahlung integral energy on the atomic number of the sample and the incident electrons energy is obtained, and recommendations are given for calculating the mean atomic number of multicomponent samples. It is shown that even with a significant variation (within a factor of 2 or more) of the probe current or the X‐ray gathering solid angle, the use of the proposed normalization method improves the reproducibility of analysis to a value characteristic of measurements at a stable probe current and a standing solid angle. The method is recommended for the development of standardless EPMA EDS. |
doi_str_mv | 10.1002/xrs.3301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726015016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726015016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2541-97e4ac2500cf2c54bcdfdf23d1fdfd15dcd25deab2f5a39f725adbbea5d457983</originalsourceid><addsrcrecordid>eNp10M1Kw0AQB_BFFKxV8BEWvHhJ3d1km-Yo4kehIPgB3pZJdlK3pJu6k6q5-Qg-o0_i1vbqaYbhx_Dnz9ipFCMphLr4DDRKUyH32ECKIk8ynRb7bCBEViQTlY0P2RHRQggppCwGzE19h_MADS8DLom6AK_N2s85egzzngNx8Nz5cu2ajlMH3kKw8bADP1_f1tEKA7l35Nhg1YXW81VoS-RLV4UWPDQ9OTpmBzU0hCe7OWTPN9dPV3fJ7P52enU5SyqlM5kUOWYQVyGqWlU6Kytb21qlVsZhpbaVVdoilKrWkBZ1rjTYskTQNtN5MUmH7Gz7N2Z4WyN1ZtGuQwxBRuVqLKQWchzV-VbFhEQBa7MKbgmhN1KYTZEmFmk2RUaabOmHa7D_15mXh8c__wtnank2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726015016</pqid></control><display><type>article</type><title>Integral bremsstrahlung energy as an inbuilt standard in energy‐dispersive electron probe microanalysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Karmanov, Nikolay Semenovich ; Kanakin, Sergei Vasilievich ; Lavrent'ev, Yuri Grigorievich</creator><creatorcontrib>Karmanov, Nikolay Semenovich ; Kanakin, Sergei Vasilievich ; Lavrent'ev, Yuri Grigorievich</creatorcontrib><description>To improve the accuracy of the energy‐dispersive electron probe microanalysis (EPMA EDS) without measuring the probe current, it is proposed to normalize the measured analyte net X‐ray intensity to the bremsstrahlung integral energy of the analyzed sample. The integral energy is calculated using a modified Kramers formula, the parameters of which have been refined based on processing the spectra of single‐element samples (4 ≤ Z ≤ 83), acquired in the incident electrons energy range from 10 to 25 keV. The dependence of the bremsstrahlung integral energy on the atomic number of the sample and the incident electrons energy is obtained, and recommendations are given for calculating the mean atomic number of multicomponent samples. It is shown that even with a significant variation (within a factor of 2 or more) of the probe current or the X‐ray gathering solid angle, the use of the proposed normalization method improves the reproducibility of analysis to a value characteristic of measurements at a stable probe current and a standing solid angle. The method is recommended for the development of standardless EPMA EDS.</description><identifier>ISSN: 0049-8246</identifier><identifier>EISSN: 1097-4539</identifier><identifier>DOI: 10.1002/xrs.3301</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Inc</publisher><subject>Atomic properties ; Bremsstrahlung ; bremsstrahlung simulation ; Dispersion ; Electron probe microanalysis ; Energy ; EPMA EDS ; Mathematical analysis ; Parameter modification ; Quantitative analysis ; standardless analysis</subject><ispartof>X-ray spectrometry, 2022-09, Vol.51 (5-6), p.444-453</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2541-97e4ac2500cf2c54bcdfdf23d1fdfd15dcd25deab2f5a39f725adbbea5d457983</cites><orcidid>0000-0001-6515-5079 ; 0000-0003-2400-2409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fxrs.3301$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fxrs.3301$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1413,27906,27907,45556,45557</link.rule.ids></links><search><creatorcontrib>Karmanov, Nikolay Semenovich</creatorcontrib><creatorcontrib>Kanakin, Sergei Vasilievich</creatorcontrib><creatorcontrib>Lavrent'ev, Yuri Grigorievich</creatorcontrib><title>Integral bremsstrahlung energy as an inbuilt standard in energy‐dispersive electron probe microanalysis</title><title>X-ray spectrometry</title><description>To improve the accuracy of the energy‐dispersive electron probe microanalysis (EPMA EDS) without measuring the probe current, it is proposed to normalize the measured analyte net X‐ray intensity to the bremsstrahlung integral energy of the analyzed sample. The integral energy is calculated using a modified Kramers formula, the parameters of which have been refined based on processing the spectra of single‐element samples (4 ≤ Z ≤ 83), acquired in the incident electrons energy range from 10 to 25 keV. The dependence of the bremsstrahlung integral energy on the atomic number of the sample and the incident electrons energy is obtained, and recommendations are given for calculating the mean atomic number of multicomponent samples. It is shown that even with a significant variation (within a factor of 2 or more) of the probe current or the X‐ray gathering solid angle, the use of the proposed normalization method improves the reproducibility of analysis to a value characteristic of measurements at a stable probe current and a standing solid angle. The method is recommended for the development of standardless EPMA EDS.</description><subject>Atomic properties</subject><subject>Bremsstrahlung</subject><subject>bremsstrahlung simulation</subject><subject>Dispersion</subject><subject>Electron probe microanalysis</subject><subject>Energy</subject><subject>EPMA EDS</subject><subject>Mathematical analysis</subject><subject>Parameter modification</subject><subject>Quantitative analysis</subject><subject>standardless analysis</subject><issn>0049-8246</issn><issn>1097-4539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10M1Kw0AQB_BFFKxV8BEWvHhJ3d1km-Yo4kehIPgB3pZJdlK3pJu6k6q5-Qg-o0_i1vbqaYbhx_Dnz9ipFCMphLr4DDRKUyH32ECKIk8ynRb7bCBEViQTlY0P2RHRQggppCwGzE19h_MADS8DLom6AK_N2s85egzzngNx8Nz5cu2ajlMH3kKw8bADP1_f1tEKA7l35Nhg1YXW81VoS-RLV4UWPDQ9OTpmBzU0hCe7OWTPN9dPV3fJ7P52enU5SyqlM5kUOWYQVyGqWlU6Kytb21qlVsZhpbaVVdoilKrWkBZ1rjTYskTQNtN5MUmH7Gz7N2Z4WyN1ZtGuQwxBRuVqLKQWchzV-VbFhEQBa7MKbgmhN1KYTZEmFmk2RUaabOmHa7D_15mXh8c__wtnank2</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Karmanov, Nikolay Semenovich</creator><creator>Kanakin, Sergei Vasilievich</creator><creator>Lavrent'ev, Yuri Grigorievich</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6515-5079</orcidid><orcidid>https://orcid.org/0000-0003-2400-2409</orcidid></search><sort><creationdate>202209</creationdate><title>Integral bremsstrahlung energy as an inbuilt standard in energy‐dispersive electron probe microanalysis</title><author>Karmanov, Nikolay Semenovich ; Kanakin, Sergei Vasilievich ; Lavrent'ev, Yuri Grigorievich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2541-97e4ac2500cf2c54bcdfdf23d1fdfd15dcd25deab2f5a39f725adbbea5d457983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic properties</topic><topic>Bremsstrahlung</topic><topic>bremsstrahlung simulation</topic><topic>Dispersion</topic><topic>Electron probe microanalysis</topic><topic>Energy</topic><topic>EPMA EDS</topic><topic>Mathematical analysis</topic><topic>Parameter modification</topic><topic>Quantitative analysis</topic><topic>standardless analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karmanov, Nikolay Semenovich</creatorcontrib><creatorcontrib>Kanakin, Sergei Vasilievich</creatorcontrib><creatorcontrib>Lavrent'ev, Yuri Grigorievich</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>X-ray spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karmanov, Nikolay Semenovich</au><au>Kanakin, Sergei Vasilievich</au><au>Lavrent'ev, Yuri Grigorievich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integral bremsstrahlung energy as an inbuilt standard in energy‐dispersive electron probe microanalysis</atitle><jtitle>X-ray spectrometry</jtitle><date>2022-09</date><risdate>2022</risdate><volume>51</volume><issue>5-6</issue><spage>444</spage><epage>453</epage><pages>444-453</pages><issn>0049-8246</issn><eissn>1097-4539</eissn><abstract>To improve the accuracy of the energy‐dispersive electron probe microanalysis (EPMA EDS) without measuring the probe current, it is proposed to normalize the measured analyte net X‐ray intensity to the bremsstrahlung integral energy of the analyzed sample. The integral energy is calculated using a modified Kramers formula, the parameters of which have been refined based on processing the spectra of single‐element samples (4 ≤ Z ≤ 83), acquired in the incident electrons energy range from 10 to 25 keV. The dependence of the bremsstrahlung integral energy on the atomic number of the sample and the incident electrons energy is obtained, and recommendations are given for calculating the mean atomic number of multicomponent samples. It is shown that even with a significant variation (within a factor of 2 or more) of the probe current or the X‐ray gathering solid angle, the use of the proposed normalization method improves the reproducibility of analysis to a value characteristic of measurements at a stable probe current and a standing solid angle. The method is recommended for the development of standardless EPMA EDS.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/xrs.3301</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6515-5079</orcidid><orcidid>https://orcid.org/0000-0003-2400-2409</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0049-8246 |
ispartof | X-ray spectrometry, 2022-09, Vol.51 (5-6), p.444-453 |
issn | 0049-8246 1097-4539 |
language | eng |
recordid | cdi_proquest_journals_2726015016 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Atomic properties Bremsstrahlung bremsstrahlung simulation Dispersion Electron probe microanalysis Energy EPMA EDS Mathematical analysis Parameter modification Quantitative analysis standardless analysis |
title | Integral bremsstrahlung energy as an inbuilt standard in energy‐dispersive electron probe microanalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integral%20bremsstrahlung%20energy%20as%20an%20inbuilt%20standard%20in%20energy%E2%80%90dispersive%20electron%20probe%20microanalysis&rft.jtitle=X-ray%20spectrometry&rft.au=Karmanov,%20Nikolay%20Semenovich&rft.date=2022-09&rft.volume=51&rft.issue=5-6&rft.spage=444&rft.epage=453&rft.pages=444-453&rft.issn=0049-8246&rft.eissn=1097-4539&rft_id=info:doi/10.1002/xrs.3301&rft_dat=%3Cproquest_cross%3E2726015016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726015016&rft_id=info:pmid/&rfr_iscdi=true |